
Automating Method Naming with
Context-Aware Prompt-Tuning

Jie Zhu, Lingwei Li, Li Yang*, Xiaoxiao Ma, Chun Zuo

(Tel: Li Yang*, yangli2017@iscas.ac.cn, 010-62661198)

The 31st ACM/IEEE International Conference on Program Comprehension (ICPC), 2023

Background

1

In software development, method names provide significant
information of program functionality with developers.

However, method names could also be confusing, making
programs even harder to understand and more error-prone.

To ease developers’ burden on method naming, many
approaches have been proposed to improve the naming
quality and code readability.

Phil Karlton: "There are only two hard things in Computer Science: cache invalidation and naming things. "

Task1: detect inconsistent method name

Task2: recommend a high-quality method
name as candidate

Related Work

2

[1] S. Nguyen, H. Phan, T. Le, and T. N. Nguyen, “Suggesting natural method names to check name consistencies,” in ICSE ’20: 42nd International Conference on Software Engineering

[2] S. Wang, M. Wen, B. Lin, and X. Mao, “Lightweight global and local contexts guided method name recommendation with prior knowledge,” in ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering

[3] F. Liu, G. Li, Z. Fu, S. Lu, Y. Hao, and Z. Jin, “Learning to recommend method names with global context,” in ICSE ’22: 44th International Conference on Software Engineering

MNire Cognac GTNM
MNire first generates a candidate
name with a RNN-based model and
compares the current name against it.

Cognac guides method name
recommendation with local and
global contexts.

GTNM considers different contexts and
employs a transformer-based neural
network to suggest method names.

Generate-then-Compare Global Context Transformer

[1] [2] [3]

Motivation

 Learn the semantic representation of PL & NL

All models of previous deep learning based methods are trained from scratch,
learning two distinct objectives simultaneously:

 Learn the relationship between method name and its implementation

3

Limitation 1

The misalignment between the two optimizing objectives decreases the efficiency of

training and thus leads to sub-optimal results.

Motivation
Most recent method name consistency checking approaches, including MNire and
Cognac, follow a generate-then-compare strategy to detect inconsistent method
names, facing difficulty measuring the semantic consistency.

4

Limitation 2

protected void doSetup(Context context) {
super.bindCurrentConfiguration(context.getConfiguration());

}
Original name: doSetup

Generated name: doBindCurrentConfiguration

similarity =
1

4 + 3 ∗ 0.5
≈ 0.286 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

However, method names with completely different sub-tokens could be semantically similar, while

names with high lexical similarity could have totally different meanings. Thus, we need to develop a

new approach to detect inconsistent names without requiring calculating lexical similarity.

Approach

5

Approach

6

Adopt the “pre-train, prompt, and predict” paradigm to detect
inconsistent method names and generate high-quality names.

Prompt tuning helps bridge the gap between pre-training and
tuning on downstream tasks, which contributes to fully exploiting
the knowledge and capacity of the pre-trained CodeT5 model.

Prompt tuning

Approach

7

Training Method Name Consistency Checking Model

• How to detect inconsistency without calculating lexical similarity

• Model this problem as a binary classification task directly and train a 2-

class classification model to detect.

• But how to collect enough classification training data?

• Collect enough training data for method name consistency model training

• Consistent Examples: Easy to acquire. (from MNR dataset)

• Inconsistent Examples: Difficult to collect (no open large dataset, and

also almost impossible to crawl from OSS community)

• Another important point is that even inconsistent method names are

usually closely related to its context.

• Thus, we need Related-but-Inconsistent names as training

examples (hard negative mining).

Option1: Random sample names from other methods
as inconsistent (inconsistent, but not related)

Option2: Random sample names from other
methods within the same file as inconsistent
(close, but not necessarily inconsistent)

Option3: Corrupt the original name to make it
slightly different (related and inconsistent) √

Approach

8

How to corrupt the original name to make it close-but-inconsistent?

• I try to follow the idea of BART to corrupt the original method name

Original Name: check Initial Padding => Generated Inconsistent Name: get Initial Padding

Approach

9

Evaluation

10

Method Name Recommendation Task

1. Focus on learning method name recommendation with
better understanding of NL & PL tokens from pretrained model

2. Fully exploit the knowledge and capacity of pre-trained
model with prompt-tuning

Evaluation

11

Method Name Consistency Checking Task

2. Improving the overall accuracy via measuring semantic consistency instead of calculating lexical similarity

1. Better initialization from pretrained model

Case Study

12

Capable of measuring semantic consistency instead of totally depending on lexical similarity

Quality and Length Analysis

13
[4] R. S. Alsuhaibani, C. D. Newman, M. J. Decker, M. L. Collard, and J. I. Maletic, “An approach to automatically assess method names,” in Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, ICPC 2022, Virtual Event, May 16-17, 2022

[1] S. Nguyen, H. Phan, T. Le, and T. N. Nguyen, “Suggesting natural method names to check name consistencies,” in ICSE ’20: 42nd International Conference on Software Engineering

AUMENA could generate method names with
similar or even higher quality compared to
human-written ones from the perspective of
method naming standards.

Conclusion

14

Method names provides significant information
for program comprehension.

Current approaches face difficulty in training sufficiently
and measuring semantic consistency.

Leveraging hard negative mining and prompt
tuning with T5.

Outperform all baselines in metrics and also perform
well on naming standards.

Thanks!

