The 315t ACM/IEEE International Conference on Program Comprehension (ICPC), 2023

Automating Method Naming with
Context-Aware Prompt-Tuning

Jie Zhu, Lingwei Li, Li Yang*, Xiaoxiao Ma, Chun Zuo
(Tel: Li Yang*, yangli2o17@iscas.ac.cn, 010-62661198)

Sinosoft Co.,Ltd.

@ tonsaxy o

ISeAS

sity of Chi > Acader

B Background

In software development, method names provide significant -
public int getBooleanValue()
information of program functionality with developers. {
String value = super.getValue();
However, method names could also be confusing, making try {
return Integer.parselnt(value);
programs even harder to understand and more error-prone. } catch (NumberFormatException) {
, . // TODO: validation handling/logging
To ease developers’ burden on method naming, many throw (e);
approaches have been proposed to improve the naming) /
guality and code readability.
The original method name is inconsistent with its function and
we should replace it with a better name such as 'getintValue'.

Taski1: detect inconsistent method name

Task2: recommend a high-quality method
name as candidate

"

Phil Karlton: "There are only two hard things in Computer Science: cache invalidation and naming things.

B Related Work

Contextual
sentence

Source
Embedding

Encoder RN /1

Attention

Decoder RNN 5

Target ¥y
Embedding

Method name

MNire first generates a candidate

name with a RNN-based model and
compares the current name against it.

Generate-then-Compare

Final Distribution

L Attention
Distribution
1

sajels UappIH
19po3aq

- Loal
| Contoxt <START> get

37: g

12 &3 - N—- -

i §§{|F|~|k|~'"*|* }
g ¥ t 1.1

ord]

v
Input: Token Sequence with Indicators Output: Method Name

[2]
Cognac

Cognac guides method name
recommendation with local and
global contexts.

Global Context

/2|
— Embedding

Documentation

commn
Code
m Embedding

Local Context

[-) Code

Project-specific
Context

Project

Project Context %
Encoder
mOwe0O0R0)|

Invoked Weight

[3]
GTNM

GTNM considers different contexts and
employs a transformer-based neural
network to suggest method names.

Transformer

[1] S. Nguyen, H. Phan, T. Le, and T. N. Nguyen, “Suggesting natural method names to check name consistencies,” in ICSE “20: 42nd International Conference on Software Engineering

[2] S. Wang, M. Wen, B. Lin, and X. Mao, “Lightweight global and local contexts guided method name recommendation with prior knowledge,” in ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering
[3] F. Liu, G. Li, Z. Fu, S. Lu, Y. Hao, and Z. Jin, “Learning to recommend method names with global context,” in ICSE '22: 44th International Conference on Software Engineering

All models of previous deep learning based methods are trained from scratch,
learning two distinct objectives simultaneously:

) Learn the semantic representation of PL & NL

) Learn the relationship between method name and its implementation

The misalignment between the two optimizing objectives decreases the efficiency of
training and thus leads to sub-optimal results.

Most recent method name consistency checking approaches, including MNire and
Cognac, follow a generate-then-compare strategy to detect inconsistent method
names, facing difficulty measuring the semantic consistency.

protected void doSetup(Context context) {

super.bindCurrentConfiguration(context.getConfiguration()); Generated name: doBindCurrentConfiguration
}
Original name: doSetup
hdk\ imilarit - 0.286 < threshold
) numO fSharedTokens(p, ¢) similarity = ~ U. < tnresho
Sim(p,c) = / L y (4+3)*0.5

(numO fTokens(p) + numO fTokens(c))/2

However, method names with completely different sub-tokens could be semantically similar, while
names with high lexical similarity could have totally different meanings. Thus, we need to develop a
new approach to detect inconsistent names without requiring calculating lexical similarity.

I Approach

Method Name

B. Method Name Recommendation

[Naming Accuracy Analysis] \
= —

4 O N

Clone Java Repos

Generated Method Name [Haming Gl Sovsis]

/

[Identifier-Aware Pre-trained CodeT5]

~

Java Code Files

/

Preprocess and Context

'] R -
Filter Files - MNR
U ’ ‘ \\ D D Model | Contexts
B

Data Cleaning Context Extraction Method T T T‘ T T‘ ? Method Name consistent
" Contexts | pdentifers] [Sblings) [Class Nams] -~ == [Signature] ~ Method Name : [<MASK] Gongistericy Checking
‘ Remove Todo/Empty | Local Context (MCC)

: L J L J
‘ Replace Delimiters | Sibling Context
(AT Method Contexts Prompt Template cansstant
‘ Identifier Splitting | Enclosing Context
— / ' \ Method Name
‘Length Normalization | Indicator Words : Method Contexts Prampt Tampfate Method Name | Recommendation(MNR)
e —— \ Consistent ¥ _—
~— Methods McC ! VL 'L i' mee Pass the
1 Training Data ! = . — Model Generate checking
e : [Contexts] = |The ‘ Method | ‘Name‘ [Name] ‘ is ‘ [MASK]
[j [j Negative : —
|\ E v » —
> 1 Good (label: consistent) ¢ MLM
< name, contexts >s N\ ; 1! (label: inconsistent) v Head Generated
K \Edit-basad Corruption E / Method Name /
A. Data Preparation C. Method Name Consistency Checking D.Application

Approach

/

[Naming Accuracy Analysis J \

Naming Quality Analysis]

B—

Generated Method Name [

T

[

Identifier-Aware Pre-trained CodeT5

)

R

tro1

[Identifiers] [Siblings] [Class Name] ~ =++ -+

00
N

[Signature] Method Name :

\L

Method Contexts

Q.

Prompt Template

tt
i
i

/

timeout

t

t

Encoder

Pre-training

Class: inconsistent

t
t

Encoder

Fine-tuning

Adopt the “pre-train, prompt, and predict” paradigm to detect
inconsistent method names and generate high-quality names.

Prompt tuning helps bridge the gap between pre-training and
tuning on downstream tasks, which contributes to fully exploiting
the knowledge and capacity of the pre-trained CodeT5 model.

Method Contexts Prompt Template Method Name

v v v

l [[Contexts] ‘The‘ Method ‘Name [Name] E [MASK]
Y

Good (label: consistent)
(label: inconsistent) v/

—

Prompt tuning

I Approach

Training Method Name Consistency Checking Model

Consistent

Methods

-

!
1 Method Contexts Prompt Template Method Name \

mMccC i ¢ i L

* How to detect inconsistency without calculating lexical similarity
* Model this problem as a binary classification task directly and train a 2-
class classification model to detect.
* But how to collect enough classification training data?
* Collect enough training data for method name consistency model training
* Consistent Examples: Easy to acquire. (from MNR dataset)
* Inconsistent Examples: Difficult to collect (no open large dataset, and
also almost impossible to crawl from OSS community)
* Another important point is that even inconsistent method names are
usually closely related to its context.
* Thus, we need Related-but-Inconsistent names as training

examples (hard negative mining).

mcc
Model
—>

Training Data)

[Contexts] | |The| | Method | Name is | |[[MASK]
'

P
|Positive|

Negative

1
=|\ - \ 4

! Good (label: consistent) < MLM
\ d (label: inconsistent) v/ Head
kEdit-based Corruption E /

C. Method Name Consistency Checking

= QOptionl: Random sample names from other methods

as inconsistent (inconsistent, but not related)

Option2: Random sample names from other
methods within the same file as inconsistent
(close, but not necessarily inconsistent)

Option3: Corrupt the original name to make it
slightly different (related and inconsistent) v

Approach

How to corrupt the original name to make it close-but-inconsistent?

* |tryto follow the idea of BART to corrupt the original method name

Consistent
Methods

-

DE.ABC. C.DE.AB

Token Masking Sentence Permutation Document Rotation

(REED) £ (REc.0e) (0 ABED)

Token Deletion Text Infilling

Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Qdit-based Corruption

N mMcc
» e
Positive Training Data :
Negative
o

!
1 Method Contexts Prompt Template Method Name

v v v

~

[Contexts] = | The Method‘ Name I[Name]| isl

[MASK]‘

(label: inconsistent) v/

Good (label: consistent) <
Head

\ 4

/

C. Method Name Consistency Checking

Original Name: check Initial Padding => Generated Inconsistent Name: get Initial Padding

Mmcc
Model

I Approach

Method Name

B. Method Name Recommendation

[Naming Accuracy Analysis] \
= —

4 O N

Clone Java Repos

Generated Method Name [Haming Gl Sovsis]

/

[Identifier-Aware Pre-trained CodeT5]

~

Java Code Files

/

Preprocess and Context

'] R -
Filter Files - MNR
U ’ ‘ \\ D D Model | Contexts
B

Data Cleaning Context Extraction Method T T T‘ T T‘ ? Method Name consistent
" Contexts | pdentifers] [Sblings) [Class Nams] -~ == [Signature] ~ Method Name : [<MASK] Gongistericy Checking
‘ Remove Todo/Empty | Local Context (MCC)

: L J L J
‘ Replace Delimiters | Sibling Context
(AT Method Contexts Prompt Template cansstant
‘ Identifier Splitting | Enclosing Context
— / ' \ Method Name
‘Length Normalization | Indicator Words : Method Contexts Prampt Tampfate Method Name | Recommendation(MNR)
e —— \ Consistent ¥ _—
~— Methods McC ! VL 'L i' mee Pass the
1 Training Data ! = . — Model Generate checking
e : [Contexts] = |The ‘ Method | ‘Name‘ [Name] ‘ is ‘ [MASK]
[j [j Negative : —
|\ E v » —
> 1 Good (label: consistent) ¢ MLM
< name, contexts >s N\ ; 1! (label: inconsistent) v Head Generated
K \Edit-basad Corruption E / Method Name /
A. Data Preparation C. Method Name Consistency Checking D.Application

B Evaluation

Method Name Recommendation Task

TABLE III
RESULTS OF METHOD NAME RECOMMENDATION

1. Focus on learning method name recommendation with

Dataset |Approach |Precision Recall Fl-score EM Acc

better understanding of NL & PL tokens from pretrained model Code2vee | 234 2 214 -
Javacsmall | MNire 448 38.7 415 155

Cognac 67.1 59.7 63.2 -
| AUMENA | 69.6 67.6 68.6 443

i i - i Code2vec 364 27.9 31.9 -
2. Fully e_pr0|t the knowledge and capacity of pre-trained | e o e oy

model with prompt-tuning Cognac | 648 573 608 -
| AUMENA | 72.6 71.4 72.0 50.9

Code2vec 44.2 38.3 41.6 -

TABLE 1 :

MN 63.1 59.0 61 374

STATISTICS OF THE MNR DATASETS Java-large Cog[llfi 714 61.9 66.3 ‘
| AUMENA | 740 73.2 73.6 553

Datasets | Train Validation Test

Code2vec 51.9 39.8 45.1 35.6
Java-small 643K 31K 45K MNire 66.3 62.1 64.2 42.6

Java-median | 2,711K 389K 369K MNire’s Cognac 70.2 66.8 68.5 -
Java-large | 13,442K 305K 403K GTNM 770 74.1 75.6 62.0

MNire’s 16,580K 3,982K 267K | AUMENA | 851 84.3 84.7 71.0

B Evaluation

Method Name Consistency Checking Task

1. Better initialization from pretrained model

2. Improving the overall accuracy via measuring semantic consistency instead of calculating lexical similarity

TABLE IV

RESULTS OF METHOD NAME CONSISTENCY CHECKING

| DebugMethodName[8] | MNire[20] | DeepName[21] | Cognac[12] | AUMENA* | AUMENA

Precision 56.8 62.7 72.3 68.6 84.4 81.9

Inconsistent Recall 84.5 93.6 92.1 97.6 70.1 78.9
F-score 67.9 75.1 81.0 80.6 76.6 80.4

Precision 72.0 84.2 86.4 96.0 74.4 79.7

Consistent Recall 38.2 56.0 64.8 55.6 87.0 82.6
F-score 499 67.3 74.1 70.4 80.2 81.1

Overall Accuracy | 60.9 68.9 | 75.8 76.6 78.6 80.8

11

Case Study

Capable of measuring semantic consistency instead of totally depending on lexical similarity

protected void checkExpiration() { 1
long timeout = maxIdleTimeout;
if (timeout < 1) §{
return;

}

if (System.currentTimeMillis() - lastActive > timeout) {
String msg = sm.getString("wsSession.timeout");
doClose(new CloseReason(CloseCodes.GOING _AWAY, msg),
new CloseReason(CloseCodes.CLOSED ABNORMALLY, msg));

Ground Truth: Consistent

MNire: Inconsistent (MNR result: doClose)

AUMENA#*: Inconsistent (MNR result: checkldleTimeout)
AUMENA: Consistent

public Properties getSystemProperties() {

return sysProps;

}

Ground Truth: Consistent

MNire: Inconsistent (MNR result: getSysProps)
AUMENA*: Inconsistent (MNR result: getSysProps)
AUMENA: Consistent \

public void insertTuple(int fieldId, Tuple tuple) {
this.put(fieldld, tuple.asDatum(tieldld));

}

Ground Truth: Consistent

MNire: Inconsistent (MNR result: set)
AUMENA*: Inconsistent (MNR result: put)
AUMENA: Consistent

public int getBooleanValue() { 4
String value = super.getValue();
try {

return Integer.parselnt(value);

} catch (NumberFormatException) {
// TODO: validation handling/logging
throw (e);

}

}

Ground Truth: Inconsistent

MNire: Consistent (MNR result: getValue)
AUMENA*: Consistent (MNR result: getIntValue)
AUMENA: Inconsistent v/

Fig. 4.

Some examples from MCC testset

12

I Quality and Length Analysis

1.0
. 1.4 —&— AUMENA EM Accuracy
AUMENA could generate method names with ~&~ MNire EM Accuracy
similar or even higher quality compared to - ad i | o
human-written ones from the perspective of g 101 9
. a | 5
method naming standards. 5 s **§
s
‘é 0.6 - 0.4 g
2 &
[0 Excellent W Good © Fair m=® Poor # 0.4
- 0.2
AUMENA 210594 0.2
0.0- - 0.0
Human-written 202814 61399 1 2 3 7 5
I T T T # Length of Method Name
0 100000 200000 300000
Fig. 6. The method name length distribution and the exact match accuracy
Fig. 5. Results of Naming Quality Analysis with different lengths

[1] S. Nguyen, H. Phan, T. Le, and T. N. Nguyen, “Suggesting natural method names to check name consistencies,” in ICSE “20: 42nd International Conference on Software Engineering

[4] R. S. Alsuhaibani, C. D. Newman, M. J. Decker, M. L. Collard, and J. I. Maletic, “An approach to automatically assess method names,” in Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, ICPC 2022, Virtual Event, May 16-17, 2022 13

B Conclusion

Method names provides significant information
for program comprehension.

Current approaches face difficulty in training sufficiently
and measuring semantic consistency.

B Background

Most recent method name consistency checking approaches, including MNire and

public int getBooleanValue()
i Cognac, follow a generate-then-compare strategy to detect inconsistent method
String value = super.getValue(); names, facing difficulty measuring the semantic consistency.
try {
return Integer.parselnt(value);
X protected void doSetup(Context context) {
} catch (NumberFormatException e) { uperbindCurrentC: geiC ion(); Predict name: doBindCurrentConfiguration
// TODO: validation handling/logging }
throw (e); Original name: doSetup .
1
} _ numO fSharedTokens(p, c) * similarity = —————— = 0.286 < threshold
} Sim(p.€) = G0 Takens(p) + mumO Tokens(@)/2 (4+3)%05
The original method name is inconsistent with its function and However, method names with completely different sub-tokens could be semantically similar, while
we should replace it with a better name such as ‘getintValue'. names with high lexical similarity could have totally different meanings. Thus, we need to develop a
new approach to detect inconsistent names without requiring calculating lexical similarity.

Leveraging hard negative mining and prompt Outperform all baselines in metrics and also perform
well on naming standards.

tuning with T5.
il Approach B Quality and Length Analysis
B. Method Name Recommendation /@—\

= N Rty R
() e/ B
Generaed et ame
GitHub ¥ l Excellent —mmm Good Fair = Poor MNire EM Accuracy
AUMENA]

= Ground Truth
AUMENA

Identifier-Aware Pre-trained CodeT5

-
EEEEEE R :
wn]
[e | Human-written H
mo | 421 ot s 0 100000 200000 300000 g
1 onosrane: s v :
Fig. 5. Results of Naming Quality Analysis 5
:

Method Cantxs Prampt Tompiate

1 s

2 3 4
Length of Method Name

. N ethoa s
. Meod Contess Promp Tepite Mt e Rocommendation(NR)
oo = l
P Geneme o
VLo (o e [e o]]| [
t @ [jl wy . Fig. 6. The method name length distribution and the exact match accuracy
< name, contexts >s s Generated with different lengths
Wetnod Name
D.Application 14

A. Data Preparation C. Method Name Consistency Checking

Thanks!

Sinosoft Co.,Ltd.

&) Fa L 2 \<>\ MRERIE

