
Testing Your Question Answering Software via Asking Recursively

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

1

Presenter: Zhu Jie

2022.3.17

Authors

Songqiang Chen

Master Student (2020 - Now)

Wuhan University

• Intelligent Software Engineering

• Software Testing

• Natural Language Processing

2https://imcsq.github.io/

Authors

3http://xiaoyuanxie.github.io/

Xiaoyuan Xie
Professor
Leader of CSTAR Group
Wuhan University
• Software Testing(Metamorphic

testing and Mutation testing)
• Program Slicing and Analysis
• Debugging and Fault Localization
• Search-based Software Engineering
• Machine Learning

Research Team

4

http://cstar.whu.edu.cn/cn/index.html

CSTAR
Center of Software Testing, Analysis,
and Reliability
Computer School of Wuhan University
• Software Testing
• Software Reliability and Quality
• Program Analysis
• Debugging and Fault Localization
• Machine Learning

Why Choose This Paper?

5

• ACM SIGSOFT Distinguished Paper

• A simple and novel idea

• SE for ML paper

ISE: “ML for SE” or “SE for ML”

6

ML for SE

3. Quality and Maintenance
(testing/log/AIOps/performance/bug detection/code changes…)

2. Documentation
(code comment/review/var naming/app user review/bug report/commit
message/release notes/github/stackoverflow/developer talks&vlogs…)

1. Code Intelligence
(code generation/completion/edit/repair/representation/search/clone/reuse/type
prediction/smells/verification/debug/api...)

https://ml4code.github.io/tags.html

ISE: “ML for SE” or “SE for ML”

7

SE for ML

3. Auto ML

2. Model Interpretation and Explainability

1. Model Evaluation and Testing
(such as testing QA/autopilot/machine translation software)

Background

Background: Mutation/Metamorphic/Fuzz Testing

9

[1] 软件测试：一个软件工艺师的方法（原书第4版）
[2] https://www.cnblogs.com/TongWee/p/4505289.html

What is Mutation Testing(变异测试)?

• Motivation: Who guards the guardian? Who tests the tests?

• Target: Improve the test cases of program

• Idea: If we mutate the original program, the tests still pass. There

will be two possible reasons: the original program is logically equal

to the mutated program / Or the tests could not detect all possible

cases of the program.

Background: Mutation/Metamorphic/Fuzz Testing

10

[1] 钟文康, 葛季栋, 陈翔, 李传艺, 唐泽, 骆斌. 面向神经机器翻译系统的多粒度蜕变测试. 软件学报, 2021, 32(4): 1051-1066.
http://www.jos.org.cn/1000-9825/6221.htm
[2] 董国伟, 徐宝文, 陈林, 聂长海, 王璐璐. 蜕变测试技术综述[J]. 计算机科学与探索, 2009, 3(2): 130-143.

What is Metamorphic Testing(蜕变测试)?

• Motivation: Oracle Problem (How could we test a software when we

don’t know expected output)

• Example: we want to test function which computes sin(x)

• Metamorphic testing: we could calculate the result of a random num

such as 1.3, then we check if f(1.3) == f(𝜋-1.3), f(1.3) == -f(2𝜋-1.3)

• Advantages: we could test a program we know nothing about

• Key procedures: Build Metamorphic Relation(such as sin(x)==sin(𝜋-x))

• Applications: Machine Learning Software, Complex Software

Background: Metamorphic Testing

11[1]基于蜕变测试的文本定位系统稳定性测试 https://www.bilibili.com/video/BV1b64y1Y7UY?spm_id_from=333.337.search-card.all.click
[2] http://www.is.cas.cn/ztzl2016/2021xsnh/2021hbzs/

Background: Mutation/Metamorphic/Fuzz Testing

12

[1] https://zhuanlan.zhihu.com/p/43432370
[2] https://github.com/wcventure/FuzzingPaper

What is Fuzz Testing(模糊测试)?

• Definition: Fuzzing or fuzz testing is an automated software testing

technique that involves providing invalid, unexpected, or random data as

inputs to a computer program.

• History: 1988, Prof. Barton Miller was testing the reliability of UNIX

command line programs. But due to the heavy rain, there were some

unexpected wrong inputs sent to the program, which caused the

program to terminate.

• Motivation: We cannot list every possible case or predict every exception

• Application: Security & Vulnerability, Software Testing

Problem: Could all software be “tested”?

13

Developer

Software

Tester

Writing
Tests

Front-End Software

• GUI Automatic Testing is not fully developed

• Take much manual effort to check every page

• Difficult to test on every possible environment (device)

AI Software

• Difficult to define equivalent classes

• Impossible to list every case

• Lack of interpretability and explainability

Untestable

https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0%2C5&q=untestable+software&btnG=

Background: Testing Untestable

14

How to test an AI software (intelligent software)?

BLEU

Background: Model Evaluation Metrics

15

BLEU

Background: Model Evaluation Metrics

16

ROUGE

Background: Model Evaluation Metrics

17

ROUGE

Background: Model Evaluation Metrics

18

Background: Model Evaluation

19

Model

Test Data Predicted Output

Real Output(Label)

Performance

Evaluation Metrics

?

?

1. Evaluation metrics may not capture
all features (semantic)

2. Some “Golden References” could be
erroneous

3. Confine the test sufficiency

4. Require much time and effort to
manually annotate the labels

5. Just-in-time Testing (Real time / detect issues during usage)

Background: Testing Untestable

20

Bad Case Mining for Machine Translation using Back Translation

Bad Case

• Bad Case: Cases that could not receive expected result

• Back Translation: A common data augmentation method

• Translate source sentence to a sentence in another language, and

then translate back into the original language

• Finally, compute the similarity between source sentence and target

sentence (Representation of sentences: LASER)

LASER

[1] Zheng W, Wang W, Liu D, et al. Testing untestable neural machine translation: An industrial case[C]//2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 2019: 314-315.
[2] Wang W, Zheng W, Liu D, et al. Detecting failures of neural machine translation in the absence of reference translations[C]//2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks–Industry Track. IEEE, 2019: 1-4.

Introduction

21

Is it possible to transfer this method to other AI software？

• Metamorphic Testing: Testing the Untestable

• Question Answering Software？

[1] Segura S, Towey D, Zhou Z Q, et al. Metamorphic testing: Testing the untestable[J]. IEEE Software, 2018, 37(3): 46-53.

How to know whether this answer is correct or not？
（Suppose that you only have this QA Software)

There is a violation between the two answers
（Actually, the first railroad is built in United States on 1827-02-28)

Implementation

22

Overview of the procedures

23

Module Definition:
SUT: software under test(QA software)
DSS: Declarative Sentence Synthesis
QSG: Question Sentence Generation
k: Knowledge(Declarative Sentence)

Question Definition:
WH: wh-question(what when who how many)
GEN: general question
ALT: alternative question

Declaration Sentence Synthesis

24
[1] Spacy简介: https://www.jianshu.com/p/e6b3565e159d
[2] Pattern简介: https://python.freelycode.com/contribution/detail/1609

Declaration Sentence Synthesis

25
[1] Spacy简介: https://www.jianshu.com/p/e6b3565e159d
[2] Pattern简介: https://python.freelycode.com/contribution/detail/1609

Step1: POS tagging(词性标注) and Dependency Parsing (using Spacy)

Step2: Adjust the place of AUX
(AUX could be “be/can/may” or “do/did”)
(might need to transform the tense and number)

Step3: Negate k if answer is “No”

After DSS …

26

Question Sentence Generation

27

Question Sentence Generation (General question)

28
[1] Spacy简介: https://www.jianshu.com/p/e6b3565e159d
[2] Pattern简介: https://python.freelycode.com/contribution/detail/1609

Step1: POS tagging(词性标注) and Dependency Parsing (using Spacy)

Step2: Check if AUX exists
(AUX could be “be/can/may” or “do/did”)

Step2-1: If AUX exists, move it to the beginning
of the whole sentence.

Step2-2: If AUX doesn’t exist, use Pattern Library
to recognize the tense and number of VERB(ROOT).
And Insert a do with suitable tense and number.

Question Sentence Generation (Wh-question)

29

Step1: Choose proper target answers

Step2: Produce the corresponding questions

Question Sentence Generation (Wh-question)

30

Step1:
POS tagging and dependency parsing

Question Sentence Generation (Wh-question)

31

Step1:
Extract noun phrases and adjective phrases
(some unsuitable answers, such as phrases, with demonstrative pronouns and the original answer,
are excluded from potential target answers)

Question Sentence Generation (Wh-question)

32

Step2:
Use UniLM to raise a reasonable question for each target answer
(UniLM is a pretrained language model which is good at generative QA/summarization/question generation)

[1] UniLM简介: https://cloud.tencent.com/developer/article/1573393

Question Sentence Generation (Wh-question)

33

Problem:
Not every question generated by UniLM is reasonable
(Unreasonable question may lead to potential false positive issues)

[1] UniLM简介: https://cloud.tencent.com/developer/article/1573393

Question Sentence Generation (Wh-question)

34

Solution:
Use target answer and question raised by UniLM to produce new declarative sentence(knowledge)
Then compute the similarity between the generated knowledge and original knowledge
(somewhat similar to the idea of back-translation we mentioned before)

[1] UniLM简介: https://cloud.tencent.com/developer/article/1573393

Question Sentence Generation (Wh-question)

35

Step3:
Filter out questions whose corresponding similarity is greater than 0.7 (in Rouge-1)
(somewhat similar to the idea of back-translation we mentioned before)

Question Sentence Generation (Wh-question)

36

Step4: Get Valid Questions
After 3 steps before, we finally generate the wh-questions from the declarative sentence(knowledge)
(and also the corresponding answer directly from potential target answer in step1)

After DSS and QSG …

37

Violation Measurement: Existence Measure

38

Step1: Discard stop words

Step2: Compute cosine similarity
between each word in ௐு

ᇱ
ௐு
௧

Step3: Average all the word-wise
maximum similarity into an overall
score to indicate the existence

Step4: Report violation if score < 0.6

Violation Measurement: Existence Measure

39

If we want to conduct existence measurement on ௐு
௧ =“the

president of Egypt” and ௐு
ᇱ =“egyptian president”

(Whether ௐு
ᇱ contains ௐு

௧

Score = (1.0000+0.7443)/2=0.8722 > 0.6

Step1: Discard stop words

Step2: Compute cosine similarity
between each word in ௐு

ᇱ
ௐு
௧

Step3: Average all the word-wise
maximum similarity into an overall
score to indicate the existence

Step4: Report violation if score < 0.6

Implementation

40

Module Definition:
SUT: software under test(QA software)
DSS: Declarative Sentence Synthesis
QSG: Question Sentence Generation
k: Knowledge(Declarative Sentence)

Question Definition:
WH: wh-question(what when who how many)
GEN: general question
ALT: alternative question

Experiment

41

Experiment: SQuAD Dataset

42
[1] https://rajpurkar.github.io/SQuAD-explorer/
[2] https://zhuanlan.zhihu.com/p/137828922

Experiment: BoolQ Dataset

43
[1] https://github.com/google-research-datasets/boolean-questions
[2] https://paperswithcode.com/dataset/boolq

Experiment: NatQA Dataset

44
[1] https://aclanthology.org/Q19-1026.pdf
[2] https://arxiv.org/pdf/2005.00700v3.pdf

Experiment: Unified QA

45
[1] https://github.com/allenai/unifiedqa
[2] UnifiedQA: https://arxiv.org/pdf/2005.00700.pdf

Unified QA: Why do we need different QA model?

• Motivation: There are different models for different types of

questions. But the ability of inference should be unified.

• Idea: Make a unified QA pretrained model / Unifying QA solutions

• Implementation: based on T5

• How to use: Fine-tune the pretrained model into specialized

models for better performance on the specific QA tasks

How did they fine-tune the QA model?

• Dataset to fine-tuned: SQuAD2 BoolQ NatQA (236422 samples)

• Pretrained-Model: UnifiedQA (T5)

• Evaluation(When to stop): Exact Match(EM) Score (per 5000 steps)

• Device: RTX3090(24GB memory)

Evaluation

46

Evaluation

47
2021中国软件大会 Keynote聚焦顶会——学术科研实践的一点认识北京大学-郝丹

Evaluation

48
2021中国软件大会 Keynote聚焦顶会——学术科研实践的一点认识北京大学-郝丹

1 Soundness

2 Significance

3 Novelty

4 Reproducibility

5 Presentation

Evaluation: Research Questions

49

RQ1: The overall effectiveness of QAASKER

RQ2: Validity of the revealed violations

RQ3: Types of the revealed true violations

RQ4: Helpfulness to fix the revealed answering issues

2021中国软件大会 Keynote聚焦顶会——学术科研实践的一点认识北京大学-郝丹

RQ1: The overall effectiveness of QAASKER

50

What is the definition of effectiveness?

• Demonstrates the effectiveness of QAASKER to reveal the

answering issues without the need for the ground truth labels

Why could MR2 and MR3 find more violation than MR1?

• MR1: WH question=>WH question

• MR2: WH question=>General question

• MR3: General question=>WH question

• Reason(conjecture): UnifiedQA Overfit the training sample? Could

only pass the test cases whose question is of the frequent types

among the training samples from their corresponding dataset

• Indicate the potential insufficient generalization of UnifiedQA to

figure out the questions of distinct types across datasets

RQ2: Validity of the Revealed Violations

51

What is next after we obtain lots of violations?

What may cause the invalid violation (false positive)?

• Generating Questions and Measurement of semantic similarity is challenging

• We need to evaluate the validity of the revealed violations

• Valid Violation(factuality): at least one incorrect answer from the

source and follow-up question

How to detect invalid violation (false positive)?

• Perform the inspection manually and independently (2 people)

• Check the validity of all violations (at most 100)

Meaningful and convincing

RQ3: Types of the Revealed True Violations

52

What is next after we inspect invalid violations?

What kinds of violations QAAsKeR could detect?

• <NoAnswer> for answerable questions

• Format mismatch between the answer and the question

• Irrelevant content of the answer

• Grammatical error

• Missing information in the answer

• We could further study the details of valid violations

• What we could do and what we couldn’t do

RQ3: Types of the Revealed True Violations

53

What kinds of violations QAAsKeR could detect?

• <NoAnswer> for answerable questions

• Format mismatch between the answer and the question

• Irrelevant content of the answer

• Grammatical error

• Missing information in the answer

RQ4: Helpfulness to Fix the Revealed Answering Issues

54

How could the revealed violations help fix the QA software？

• Violation rate about all MRs decreases a lot (By retrain a new model using training data augmented)

• Reference-based test metric stays stable (original:0.5574 –> retrained:0.5483)

RQ4: Helpfulness to Fix the Revealed Answering Issues

55

How could the revealed violations help fix the QA software？

• Violation rate about all MRs decreases a lot (By retrain a new model using training data augmented)

• Reference-based test metric stays stable (original:0.5574 –> retrained:0.5483)

Other conclusions from the study?

• It is not that easy to repair all the issues revealed by QAASKER

• Retraining a model with the samples expanded could not solve all

violation problems.

• The proposed MRs are helpful for improving the performance and

the improvement is quite substantial

• QAASKER is a testing method, which is necessary for the

reliability checking of QA software output and the in-depth

problem revealing of QA software

Small-Scale Trial by hand on Google

56

Why manual study?

• Google Search service can only answer wh-questions

• The returned results vary in forms (e.g., sometimes an exact phrase and

occasionally a paragraph with one span in bold)

• This trial could show the potential of QAASKER to reveal the real-life bugs

How did they conduct the manual trial?

• Randomly pick 20 wh-questions from MKQA

• Get answers from Google by entering questions manually

• Run QAASKER to generate new questions and their target answers

• Input the new questions as queries and obtain answers

• Finally, 5 of 20 test cases trigger a violation

57

Threats to Validity
 Representativeness of the test object(QA software) and the datasets:

• UnifiedQA is a state of-the-art QA algorithm (only method to unify the solutions)

• QA software: Open-world QA and Closed-world QA (Google, UnifiedQA)

• Datasets and Benchmarks: classic and have been widely used

 Tools that we use to realize the proposed MR (results and implementation details)

• Design various methods to avoid the false positive violations (Wh-question generation and semantic

similarity measurement are not perfect: Limited NLP techniques)

• Inspect the factuality of the revealed violations: 80% is valid

 Manual inspection and categorization of the revealed violations (subjective bias)

• Alleviate the bias from subjective cognition (deliver a tutorial and perform Cohen’s Kappa statistics)

• The agreement rate between two inspectors is substantial (0.79)

Conclusion

Metamorphic testing

• Enable the flexible just-in-time test and the extensible test that
can leverage the massive unlabeled data in real-life usages

• Break the reliance on the pre-annotated labels of test cases

• A general method which could test all kinds of QA software

Advantage

59

Why is this paper distinguished

60

Why is this paper distinguished

61

• Significance: QA Software Testing (AI software testing)

• Novelty: Metamorphic testing + Sentence transformation + Question Generation

• Soundness: Sufficient introduction of procedures; Full of examples in the paper

• Reproducibility: Dive into the experiment results; Categorize and Analyze

• Presentation: Concrete (with sufficient figures and tables)

My Thoughts

62

My Thoughts

63

My Thoughts

• Metamorphic testing seems to be useful in Machine
Learning Testing (difference with data augmentation)

64

My Thoughts

• Metamorphic testing seems to be useful in Machine
Learning Testing (difference with data augmentation)

• A simple, clear and creative idea is important

65

My Thoughts

• Metamorphic testing seems to be useful in Machine
Learning Testing (difference with data augmentation)

• A simple, clear and creative idea is important

66

• A simple, clear and creative idea is not enough

Thanks

Zhu Jie

2022.03.17

