
No More Fine-Tuning? An Experimental Evaluation of

Prompt Tuning in Code Intelligence

2022 30th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE 2022)

1

Presenter: Zhu Jie

2022.8.26

2

Authors: HIT(SZ) + CUHK

https://cuiyungao.github.io/
http://www.cse.cuhk.edu.hk/lyu/home

3

Authors: HIT(SZ) + CUHK

https://cuiyungao.github.io/
http://www.cse.cuhk.edu.hk/lyu/home

Why Choose This Paper?

4

• New: FSE’22 Paper

• Simple and Promising Method: Prompt Tuning

• Idea: The first paper using prompt tuning on code intelligence/SE

• Related Task: Code Summarization => Method Name Recommendation

• Open and Easy to Reproduce: Replication Package on GitHub

Replication Package Link: https://github.com/adf1178/PT4Code

Background

Background: Code Intelligence

6

Please check “智能化代码开发的探索与展望高翠芸.doc”

Background: Large Pre-trained Language Model

7

Pre-trained Language Models are Infrastructure in NLP

https://github.com/thunlp/OpenPrompt/tree/main/openprompt/prompts
https://www.bilibili.com/video/BV1UG411p7zv?p=56
https://www.openbmb.org/documentation/openprompt

Background: Fine-tuning

8

Example Task: Relation Extraction using fine-tuning

https://github.com/thunlp/OpenPrompt/tree/main/openprompt/prompts
https://www.bilibili.com/video/BV1UG411p7zv?p=56
https://www.openbmb.org/documentation/openprompt

Background: Why prompt-tuning?

9

There is a gap between pre-training and fine-tuning

https://github.com/thunlp/OpenPrompt/tree/main/openprompt/prompts
https://www.bilibili.com/video/BV1UG411p7zv?p=56
https://www.openbmb.org/documentation/openprompt

Gap: The inconsistent inputs and objectives
between pre-training and fine-tuning render
the knowledge of pre-trained models hard
to be fully explored.

Background: Prompt Tuning in NLP

10

Example Task: Sentiment Classification

• Sentiment Classification Task

• Given a sentence, predict whether it is positive or negative

• For example: “I hate this movie. it is terrible”. The sentiment

classification model should give a negative prediction.

• Prompt Tuning/Learning

• Build a template and fill it with the given input

• Pass the template(with input) to the pretrained model

• The model predicts the possibility of word distribution

• Use verbalizer to map the output to the label(positive or negative)

https://github.com/thunlp/OpenPrompt/tree/main/openprompt/prompts
https://www.bilibili.com/video/BV1UG411p7zv?p=56
https://www.openbmb.org/documentation/openprompt

Background: Prompt Tuning in NLP

11
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting
Methods in Natural Language Processing

Background: Prompt Tuning in SE

12

Example: Use Prompt Tuning to Predict Defect (Yes or No)

Introduction/Logic

13

How to build A Solid Logic Chain

The state-of-the-art DL-based approaches to code intelligence exploit the pre-training and finetuning
paradigm, in which language models are first pre-trained on a large unlabeled text corpora and then
finetuned on downstream tasks. For instance: CodeBERT and CodeT5 ….

Conclusion 1:
These pre-trained source code models achieve significant improvement over previous approaches.

Introduction/Logic

14

How to build A Solid Logic Chain

Conclusion 2:
However, there exist gaps between the pre-training and finetuning process of these pre-trained models.

Pre-training models such as CodeBERT and CodeT5 are generally pre-trained using the Masked Language
Modeling (MLM) objective. The input to MLM is a mixture of code snippets and natural language texts, and the
models are trained to predict randomly masked input tokens. However, when models are fine-tuned into the
downstream tasks, e.g. defect detection, the input involves only source code and the training objective changes
to a classification problem.

The inconsistent inputs and objectives between pre-training and finetuning render the knowledge of pre-
trained models hard to be fully explored, leading to sub-optimal results for downstream tasks. Besides, the
performance of fine-tuning largely depends on the scale of downstream data.

Introduction/Logic

15

How to build A Solid Logic Chain

Conclusion 3:
Recently, prompt tuning is proposed to mitigate the above issues of fine-tuning.

By adding a prompt and verbalizer, prompt tuning reformulates the classification problem into an MLM
problem, aligning the objective with the pre-training stage. This alignment unleashes the hidden power stored
in the pre-trained models. Besides, the inserted natural language prompt can involve task-specific knowledge
to facilitate the adaption to downstream tasks

Introduction/Logic

16

How to build A Solid Logic Chain

Conclusion 3:
Recently, Prompt tuning is proposed to mitigate the above issues of fine-tuning.

Conclusion 2:
However, there exist gaps between the pre-training and finetuning process of these pre-trained models.

Conclusion 1:
These pre-trained source code models achieve significant improvement over previous approaches.

Final Conclusion: No More Fine-Tuning!
Inspired by the success of prompt tuning in the NLP field, we would like to investigate if prompt
tuning is effective for code intelligence tasks.

Experiment

17

Experiment PLM: CodeT5 and CodeBERT

18https://huggingface.co/Salesforce/codet5-base

Experiment: OpenPrompt

19
https://www.openbmb.org/documentation/openprompt

Experiment: Tasks and Datasets

20

• Defect Detection: The dataset is provided by Zhou et al. It contains 27K+ C code snippets from two open-source projects

QEMU and FFmpeg, and 45.0% of the entries are defective.

• Code Summarization: We use the same dataset as the CodeT5 work. The dataset is from CodeSearchNet, which contains

thousands of code snippet and natural language description pairs for six programming languages including Python, Java,

JavaScript, Ruby, Go and PHP.

• Code Translation: The dataset is provided by Lu et al and is collected from four public repositories (including Lucene, POI,

JGit and Antlr). Given a piece of Java (C#) code, the task is to translate the code into the corresponding C# (Java) version.

Experiment: Prompt Design

21

Different Designs of Prompt Templates: Defect Prediction

Experiment: Prompt Design

22

Different Designs of Prompt Templates

Experiment: Prompt Design

23

Prompt Templates on Code Summarization

加载CodeT5预训练模型
model_config = T5Config.from_pretrained("Salesforce/codet5-base")
plm = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-base", config=model_config)
tokenizer = RobertaTokenizer.from_pretrained("Salesforce/codet5-base")
WrapperClass = T5TokenizerWrapper

定义prompt模板
promptTemplate = SoftTemplate(model=plm, tokenizer=tokenizer, text='Code: {"placeholder":"text_a"}
Summarization: {"mask"} ', initialize_from_vocab=True, num_tokens=50)

设置模型
model = PromptForGeneration(plm=plm, template=promptTemplate, freeze_plm=False, tokenizer=tokenizer,
plm_eval_mode=False)
model.to(device)

训练
……….

Experiment Results: Code Summarization

24

• Statistically Better than Fine-tuning: Moreover, prompt tuning can perform statistically better than fine-tuning at the

significance level 0.05 on code summarization with a p-value 0.019.

• Observe Consistent Improvement: Compared with fine-tuning, prompt tuning obtains an improvement of 6.46% and 2.91%

when using CodeT5-small and CodeT5-base as pre-trained models (6.46% = 1.19/18.43)

• On Small PLMs: The advantage of prompt tuning is more obvious for smaller pre-trained models.

Experiment Results: Other 2 tasks

25

RQ1: How effective is the prompt tuning in solving code intelligence tasks?

• Finding 1: Prompt tuning is more effective than fine-tuning on the code intelligence tasks, with respect to different pre-trained

models and different programming languages. Besides, the advantage of prompt tuning is more obvious for smaller pre-trained

models.

Experiment: Data Scarcity Scenarios

26

RQ2: How capable is prompt tuning to handle data scarcity scenarios?

• Experiment Setting 1: low-resource scenario, in which there are significantly few training instances

• Experiment Setting 2: cross-domain scenario, in which the model is trained on a similar data-sufficient domain and tested on

target domain. (transfer learning)

To avoid randomness in data selection, we produce each subset five times with different
seeds and run four times on each dataset. The average results are reported.

Experiment: Data Scarcity Scenarios

27

RQ2: How capable is prompt tuning to handle data scarcity scenarios?

• Experiment Setting 1: low-resource scenario, in which there are significantly few training instances

Experiment: Data Scarcity Scenarios

28

RQ2: How capable is prompt tuning to handle data scarcity scenarios?

• Experiment Setting 2: cross-domain scenario, in which the model is trained on

a similar data-sufficient domain and tested on target domain.

• The data sizes of languages such as Java and Python are greatly larger than

those of languages including Javascript and Ruby

• Transfer learning: Transferring the knowledge of similar domains with

sufficient data to the target domains

• We perform training on the programming language Java or Python, and

evaluate on the language with fewer data such as Ruby, JavaScript, and Go.

• Finding 2: Prompt tuning is more effective in low-resource

scenarios than fine-tuning. The fewer training instances, the

larger the improvement achieved by prompt tuning. Besides,

prompt tuning also shows superior performance on the

cross-domain code intelligence task.

Experiment: Data Scarcity Scenarios

29

RQ3: How different prompt templates affect the performance of prompt tuning?

1. hard prompt template (manually defined)

2. hard prompt v.s. vanilla soft prompt;

3. length of prefix soft prompt.

• Finding 3: Template design for hard prompt is more important for the classification

task than the generation task. Too short or long lengths of prefix prompts can

degrade the model performance. Hard prompts present better prediction accuracy

than the corresponding vanilla soft prompts.

Experiment: Case Study

30

Future Directions

31

• Consider more characteristics of source code: like syntactic structures, in the design of template and the choices

of verbalizer. Domain knowledge plays an important role on the design of prompts.

• How to better utilize “Code Structure Information/Code Context”

• Interpretability and Robustness: through constructing cloze-style prompt template, the factual knowledge and

biases contained in the pre-trained models can be investigated. Researchers can focus on improving the

interpretability and robustness of pre-trained models and designing novel pre-training tasks in the future

Future Directions from CNSoft

32

Future Directions from CNSoft

33

Threats to Validity

34

• Limited Datasets: To mitigate this issue, we choose the most widely-used datasets for each code-related task, modify

the seeds and run the sampling multiple times. We also plan to collect more datasets in the future to better evaluate

the

• Limited downstream tasks: Our experiments are conducted on three code intelligence tasks, including one

classification task and two generation tasks. Although these tasks are the representative ones in code intelligence,

there are many other tasks, such as code search and bug fixing. We believe that we could obtain similar observations

on these tasks since they can all be formulated as either classification tasks or generation tasks for source code. We

will evaluate more tasks with prompt tuning in our future work.

• Suboptimal prompt design: We demonstrate that prompt tuning can improve the performance of pre-trained models.

However, the prompts we use in this paper may not be the best ones. It is challenging to design the best prompt

templates and verbalizers, which will be an interesting future work.

Why is this paper accepted?

35

• Sufficient experiment work: > 200 experiments (3 tasks x 6 languages x 2 PLMs x 3 prompts, 4*V100 128GB)

• Prospective study: the first paper using prompt tuning (remains unexplored)

• Solid Logic Chain: Introduction part of the paper

• Convincing Baselines: Compared with fine-tuning/transformer etc.

Reflection: Advantages of prompt

36

• A new and universal paradigm of NLP: close the gap between pre-training and fine-tuning

• Outperform fine-tuning on zero-shot/few-shot

• A better way to utilize different modalities/sources of contexts

• We can provide some task guidance/knowledge through prompt.

• For example, in method name recommendation task, we could define prompt template as:

• “Code: xxxxxx, Identifiers: xxxxxxx, Method Signature: xxxxxxx, Class Name: xxxxx, Caller: xxxxx, …….”

• We needn’t bother to define a complex model structure to combine all these input

https://zhuanlan.zhihu.com/p/442486331
https://zhuanlan.zhihu.com/p/399295895
https://www.bilibili.com/video/BV1Sf4y1g7ra

Reflection: Criticisms of prompt

37
https://zhuanlan.zhihu.com/p/442486331
https://zhuanlan.zhihu.com/p/399295895
https://www.bilibili.com/video/BV1Sf4y1g7ra

• 感觉是旧瓶装新酒啊。。。现代deep learning就是为了规避feature engineering，可是到了prompt这

里选择template和answer不还是feature engineering嘛。

• prompt是个好的研究方向，但目前实际用处确实不大。如果固定预训练参数，可以减小模型储存空

间＋训练速度加快＋小样本效果小幅提升，但样本变多后效果就差于全量finetune。暂时只对非常

特定的场景有帮助。

• 感觉在预训练模型本身尚有多种问题存在的前提下，在预训练过程与prompt本身脱节的前提下，追

求利用prompt以摆脱finetuning似不现实，所以感觉感觉prompt更像是某种探针，用来探测模型学

到哪些则尚可，用来进行下游任务可能值得商榷。

• Hard Prompt难以设计，AutoPrompt效率低下，SoftPrompt对模型和数据要求高，verbalizer设计也很

麻烦。

Reflection: preprocessing tricks

38

• Filter by Length: too long/short seq is abnormal (>128, <3)

• Subword/Split words: getResponese => get response

• Lowercase: GET => get

• Concat Single Chars: CONSTANT_NameAndType => constant name and type

• Remove/Preserve punctuation

• AST Structure: javalang, tree-sitter

Reflection: AST

39

Conclusion

40

• Keywords/SVM/TF-IDF => RNN/LSTM/GRU => Transformer => BERT => Fine-tuning => Prompt Tuning?

• If it works in code summarization, it should also work in other areas, such as method name prediction.

• Prompt tuning might provide us with a new approach to combine and utilize different contexts.

• Use domain knowledge(downstream task characteristics) to help design prompt templates.

• To make improvements / further study

• Data Cleaning/Preprocessing: Avoid “Garbage In, Garbage Out”, what about the quality of training

corpus? Could we make some rules/tools to standardize them first?

• Prompt Ensemble

• How to discover and utilize more contexts

Better Methods, More Contexts, Better Utilization

Thanks

Zhu Jie

2022.08.26

