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Background: Code Intelligence

Please check “B et R ALXHNIREERE 5§ =.doc”



Background: Large Pre-trained Language Model

Pre-trained Language Models are Infrastructure in NLP
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https://github.com/thunlp/OpenPrompt/tree/main/openprompt/prompts
https://www.bilibili.com/video/BV1UG411p7zv?p=56 5 5
https://www.openbmb.org/documentation/openprompt The family of pre-trained language models (PLMs). 7




Background: Fine-tuning

Example Task: Relation Extraction using fine-tuning

e Extract the relation between two marked entities

I— LocatePlace 4‘

Tsinghua University is located in the northwest of Beijing
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Matching the Blanks: Distributional Similarity for Relation Learning. 2019
https://github.com/thunlp/OpenPrompt/tree/main/openprompt/prompts
https://www.bilibili.com/video/BV1UG411p7zv?p=56
https://www.openbmb.org/documentation/openprompt
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Background: Why prompt-tuning?

There is a gap between pre-training and fine-tuning

* Use PLMs as base encoders

* Add additional neural |ayerS for SpECiﬁC tasks Gap: The inconsistent inputs and objectives
between pre-training and fine-tuning render
the knowledge of pre-trained models hard
to be fully explored.

* Tune all the parameters

* There is a GAP between pre-training and fine-t

Class: Positiv
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T ( Task Head J

MLM Head T
Gap
Encoder /-\ Encoder

https://github.com/thunlp/OpenPrompt/tree/main/openprompt/prompts
https://www.bilibili.com/video/BV1UG411p7zv?p=56

Pre-training Fine-tuning https://www.openbmb.org/documentation/openprompt 9
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Background: Prompt Tuning in NLP

Example Task: Sentiment Classification

* Sentiment Classification Task
* Given a sentence, predict whether it is positive or negative
* For example: “I hate this movie. it is terrible”. The sentiment
classification model should give a negative prediction.
* Prompt Tuning/Learning
* Build a template and fill it with the given input
* Pass the template(with input) to the pretrained model
* The model predicts the possibility of word distribution

* Use verbalizer to map the output to the label(positive or negative)

https://github.com/thunlp/OpenPrompt/tree/main/openprompt/prompts
https://www.bilibili.com/video/BV1UG411p7zv?p=56
https://www.openbmb.org/documentation/openprompt

[

Input: x = “Il love this movie”

U

Template: [x] Overall, it was a [z] movie

U

was a [z] movie.”

U

Predicting: X’ = “I love this movie. Overall it

Prompting: x’ = “l love this movie. Overall it ]
was a fantastic movie.” ]

J

o — o —

M H s fambactier = PDAacitive
apping: rantastic => Fositive
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Background: Prompt Tuning in NLP

Type Task Input ([X]) Template Answer ([Z])
great
Sentiment I love this movie. [X] The movieis [Z]. fantastic
sports
Text CLS Topics He prompted the LM. [X] The textis about [Z]. science
quantity
Intention What is taxi fare to Denver? [X] The question is about [Z]. city
Aspect Bad
Text-span CLS AP Poor service but good food. [X] What about service? [Z]. Terrible
Sentiment
[X1]: An old man with ... Yes
Text-pair CLS NLI [X2]: A man walks ... 117 121, Be2] No
[X1]: Mike went to Paris. organization
Tagging NER [X2]: Paris [X1] [X2] isa [Z] entity. location
The victim ...
Summarization Las Vegas police ... [X] TL;DR: [Z] A woman ...
Text Generation
I love you.
Translation Je vous aime. French: [X] English: [Z]

I fancy you.

Table 3: Examples of input, template, and answer for different tasks. In the Type column, “CLS” is an abbreviation

for “classification”. In the Task column, “NLI” and “NER” are abbreviations for “natural language inference” (Bow-
man et al., 2015) and “named entity recognition” (Tjong Kim Sang and De Meulder, 2003) respectively.

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting
Methods in Natural Language Processing
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Background: Prompt Tuning in SE

Example: Use Prompt Tuning to Predict Defect (Yes or No)

Vocab Class Set
----- N Ml el
CLS H‘ead 5 Head import json

A ¢ ba- CLS s
def max(a, b): \ - -+ def Convert(string):
if { [MASK] | < b: L json. o Jsonltem = json.loads(string) Predicted Class
return b def Convert{string): return json_dict 4

else: Jsonlte‘m ) jsc?n angsstring) string = "{'a":1,'b"2}" g
return a r-eturn Js0n_gict . Jsonltem = Convert(string)
Strlkg =114 1, 2] The code is [ [MASK] :

Jsonltem = Convert(string)
Return the | [MASK] |value. B/

SEP ' .Label Words

-I@l MLM
MLM ] Vocab Head | ™ > s Tl i
Head T

minmax -

(a) Pre-training (b) Fine-tuning (c) Prompt tuning

Figure 1: Illustration on the process of pre-training, fine-tuning, and prompt tuning on defect detection task. [CLS] and [SEP]
denote two special tokens in pre-trained models.
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Introduction/Logic

How to build A Solid Logic Chain

The state-of-the-art DL-based approaches to code intelligence exploit the pre-training and finetuning
paradigm, in which language models are first pre-trained on a large unlabeled text corpora and then
finetuned on downstream tasks. For instance: CodeBERT and CodeT5 ...

Conclusion 1:
These pre-trained source code models achieve significant improvement over previous approaches.

13



Introduction/Logic

How to build A Solid Logic Chain

Conclusion 2:
However, there exist gaps between the pre-training and finetuning process of these pre-trained models.

Pre-training models such as CodeBERT and CodeT5 are generally pre-trained using the Masked Language
Modeling (MLM) objective. The input to MLM is a mixture of code snippets and natural language texts, and the
models are trained to predict randomly masked input tokens. However, when models are fine-tuned into the
downstream tasks, e.g. defect detection, the input involves only source code and the training objective changes

to a classification problem.

The inconsistent inputs and objectives between pre-training and finetuning render the knowledge of pre-
trained models hard to be fully explored, leading to sub-optimal results for downstream tasks. Besides, the
performance of fine-tuning largely depends on the scale of downstream data.

14



Introduction/Logic

How to build A Solid Logic Chain

Conclusion 3:
Recently, prompt tuning is proposed to mitigate the above issues of fine-tuning.

By adding a prompt and verbalizer, prompt tuning reformulates the classification problem into an MLM
problem, aligning the objective with the pre-training stage. This alignment unleashes the hidden power stored
in the pre-trained models. Besides, the inserted natural language prompt can involve task-specific knowledge
to facilitate the adaption to downstream tasks

15



Introduction/Logic

How to build A Solid Logic Chain

Conclusion 1:
These pre-trained source code models achieve significant improvement over previous approaches.

Conclusion 2:
However, there exist gaps between the pre-training and finetuning process of these pre-trained models.

Conclusion 3:
Recently, Prompt tuning is proposed to mitigate the above issues of fine-tuning.

Final Conclusion: No More Fine-Tuning!

Inspired by the success of prompt tuning in the NLP field, we would like to investigate if prompt
tuning is effective for code intelligence tasks.

16



Experiment




Experiment PLM: CodeT5 and CodeBERT

*~ . Hugging Face

& > codetb-base T @ like
& Text2Text Generation O PyTorch ¥ Transformers code_search_net arxiv:2109.00859 arxiv:1909.09436
Model card Files and versions Community

CodeT5 (base-sized model)

Pre-trained CodeT5 model. It was introduced in the paper CodeT5: Identifier-aware Unified Pre-trained

Encoder-Decoder Models for Code Understanding and Generation by Yue Wang, Weishi Wang, Shafig

Joty, Steven C.H. Hoi and first released in this repository.

Disclaimer: The team releasing CodeT5 did not write a model card for this model so this model card has

been written by the Hugging Face team (more specifically, nielsr).

Model description

From the abstract:

https://huggingface.co/Salesforce/codet5-base

Models Datasets Spaces Docs Solutions  Pricing ~= LogIn Sign Up
t5 codet5 @ AutoTrain Compatible & apache-2.0
) Train - % Deploy ~ <I> Use in Transformers

£ Edit model card

Downloads last month

13,826

Hosted inference API
&5 Text2Text Generation

Inference API has been turned off for this model

Dataset used to train Salesforce/codet5-base

code_search_net

'\r-”\j\"\/\v\
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Experiment: OpenPrompt

g
- OpenBMB #& CPM-Live w TEf ~ b BE v 4 HK ~ = EN (=54 55}
-
OpenPrompt
Docs » How to Write a Template? View page source
v0.1.2
v ™
( Search docs )
L A

How to Write a Template?

GETTING STARTED

Installation As we stated, template (which could be specific textual tokens or abstract new tokens, the only difference is the initialization) is one of the most important module in a prompt-leanring

Introduction with an Example framework. In this tutorial, we introduce how to write a template and set the corresponding attributes for a template class.

How to Write a Template? L . : . . .
Our template language takes the insight fromthe Dict grammer from Python in order to make it easy-to-learn. We use a meta key to denote the orginal text input, or the part of the

Textual Template input, or other key information. A mask key is used to denote the indice of the token that need to be predicted. A soft key denotes soft tokens and textual tokens could be directly

Soft & Mix Template written down.

Post processing
How to Write a Verbalizer? Textual Template
FAQ

A simple template for binary sentiment classification, the sentence denotes the original input and the mask is the target position,
PACKAGE REFERENCE

Base Classes {"meta": "sentence"}. Tt is {"mask"}.
Templates
Verbalizer Here is a basic template for news topic classification, where one example contains two parts - a title and a description ,

Prompt Generator

Data Utils A {"mask"} news : {"meta": "title"} {"meta": "description"}

Data Processors

Trainer In entity typing, an entity is a key information, and we want to copy it in the template,s
Utils Functions

Play with Configuration {"meta": "sentence"} {"text": "In this sentence,"} {"meta": "entity"} {"text": "is a"} {"mask"},

# you can also omit the “text™ key
{"meta": "sentence"}. In this sentence, {"meta": "entity"} is a {"mask"},

https://www.openbmb.org/documentation/openprompt
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Experiment: Tasks and Datasets

Defect Detection: The dataset is provided by Zhou et al. It contains 27K+ C code snippets from two open-source projects
QEMU and FFmpeg, and 45.0% of the entries are defective.

Code Summarization: We use the same dataset as the CodeT5 work. The dataset is from CodeSearchNet, which contains

thousands of code snippet and natural language description pairs for six programming languages including Python, Java,
JavaScript, Ruby, Go and PHP.

Code Translation: The dataset is provided by Lu et al and is collected from four public repositories (including Lucene, POlI,

JGit and Antlr). Given a piece of Java (C#) code, the task is to translate the code into the corresponding C# (Java) version.

Table 1: Statistics of the datasets used in this paper.

Traini L. T
Tasks Datasets raming va et
Set Set Set
Defect Detection | Defect ‘ 21,854 2,732 2,732
Ruby 48,791 2,209 2,279
JavaScript 123,889 8,253 6,483
Code Go 317,832 14,242 14,291
Summarization Python 409,230 22,906 22,104
Java 454,451 15,053 26,717
PHP 523,712 26,015 28,391
Code Translation | Translation ‘ 10,300 500 1,000

{1 if ey
BP = 9)

el e ife g

BLEU = BP - exp(i Wy, logpn) (10)
n=1

where p,, means the modified n-gram precision and wy, is the weight.
BP represents the brevity penalty, and ¢ and r indicate the lengths
of generated comment and target comment length, respectively. In
our experiments, we choose smoothed BLEU-4 score, i.e., n = 4, for
evaluating the generation tasks following previous work [9, 56].

20



Experiment: Prompt Design

Different Designs of Prompt Templates: Defect Prediction

fprompt (x) = “The code [X] is [Z]”

+: [defective,bad]
¥= {— . |clean, perfect]

import json

def Convert(string):

)( JsonItem = json.loads(string)
[ ] return json_dict

string = "{'a'al,"b" 23"

JsonItem = Convert(string)

[:] Natural language token
[: Learnable virtual token

[ [X] ][The][code][ is ][ [Z] ]
(a) Hard prompt

eI ) ()

(b) Vanilla soft prompt

C ) - [ J(x]J(m=]

S

Y
n

(c) Prefix soft prompt

Figure 2: Illustration on the different types of prompt, where
[X] and [Z] indicate the input slot and answer slot, respec-
tively. Both vanilla soft prompt (b) and prefix soft prompt

(c) belong to soft prompt.
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Experiment: Prompt Design

Different Designs of Prompt Templates

Lx1 ) (he J ((code ) ([is (121 ]

def Convert(string):

(a) Hard prompt

JsonItem = json.loads(string)
[X]

S MRS e (]

(b) Vanilla soft prompt

JsonItem = Convert(string)

[:] Natural language token \D [ ][ [X] ][ [Z] ]

J

g

) n
C] Learnable virtual token (c) Prefix soft prompt

Figure 2: Illustration on the different types of prompt, where
[X] and [Z] indicate the input slot and answer slot, respec-
tively. Both vanilla soft prompt (b) and prefix soft prompt
(c) belong to soft prompt.

Table 8: Classification accuracy (%) of comparing the perfor-
mance of CodeBERT model on defect detection task via dif-
ferent prompt templates. The verbalizer is fixed as +: “bad",
“defective"; —:“perfect”, “clean". The underlined texts are re-
placed by virtual tokens in the corresponding vanilla soft
prompt.

Hard Prompt Vanilla Soft Prompt Hi(;:ura;z&
[X] The code is [Z] [X] [SOFT] #3 [Z] | 63.68 63.15
A [Z] code [X] [SOFT] [X] [SOFT] [Z] | 6336 6295
[X]Itis [Z] [X] [SOFT1[SOFT] [Z] | 63.92 63.39

The code [X] is [Z] [SOFT] « 2 [X] [SOFT] [Z] | 64.17 6334

Table 9: Classification accuracy (%) of different verbalizers
on the defect detect task, where the pre-trained model is
CodeBERT. The template is “The code [X] is [Z]”.

Verbalizer ‘ Accuracy
+: “Yes" —: “No" 63.08
+: “bad” —: “perfect” 63.71

+ : “bad", “defective", “insecure”

+: “bad", “defective" —: “clean”, “perfect” ‘ 64.17
63.26

—: “clean", “perfect”, “secure”

+: “bad", “defective", “insecure", “vulnerable

« w o i o i R 63.10
—: “clean”, “perfect”, “secure”, “invulnerable

22



Experiment: Prompt Design

Prompt Templates on Code Summarization

# 7in%CodeT5T Il =AY

model_config = T5Config.from_pretrained("Salesforce/codet5-base")

plm = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-base", config=model_config)
tokenizer = RobertaTokenizer.from_pretrained("Salesforce/codet5-base")

WrapperClass = T5TokenizerWrapper

# TE X promptiEif
promptTemplate = SoftTemplate(model=pIm, tokenizer=tokenizer, text="Code: {"placeholder":"text_a"}
Summarization: {"mask"} ', initialize_from_vocab=True, num_tokens=50)

# 18 ERREY

model = PromptForGeneration(plm=plm, template=promptTemplate, freeze plm=False, tokenizer=tokenizer,
plm_eval _mode=False)

model.to(device)

# 11 %k



Experiment Results: Code Summarization

Table 4: Results (BLEU-4 scores) of the CodeT5 model on code summarization task.

Methods Ruby JavaScript Go  Python Java  PHP ‘Overall

CodeTs-smaall Fine-tuning 13.38 14.94 21.27 17.88 18.38  24.70 18.43
Prompt tuning | 13.60 15.91 22,33 1834 20.60 2695 | 19.62

CodeT5-base

Fine-tuning 13.70 15.80 22.60 17.97 19.56  25.77 19.23
Prompt tuning | 14.29 16.04 23,11 18.52 19.72 27.06 19.79

Statistically Better than Fine-tuning: Moreover, prompt tuning can perform statistically better than fine-tuning at the

significance level 0.05 on code summarization with a p-value 0.019.

Observe Consistent Improvement: Compared with fine-tuning, prompt tuning obtains an improvement of 6.46% and 2.91%
when using CodeT5-small and CodeT5-base as pre-trained models (6.46% = 1.19/18.43)

On Small PLMs: The advantage of prompt tuning is more obvious for smaller pre-trained models.

24



Experiment Results: Other 2 tasks

Table 3: Classification accuracy on defect detection.

Table 5: Experimental results on code translation tasks: Java-C# and C#-Java.

Methods ’ Accuracy
CodeBERT Flne—tunln'g 62.12
Prompt tuning | 64.17
CodeTs smadl Fme—tunm'g 62.96
Prompt tuning | 63.91
CodeT5-base Flne-tunmg 65.00
Prompt tuning | 65.82

Wit C# to Java Java to C#
BLEU Accuracy CodeBLEU | BLEU Accuracy CodeBLEU
Fine-tuning 78.67 65.40 82.55 82.29 63.80 87.01
CodeT5-small
0aeloSMAT prompt tuning | 79.59  66.00 83.06 | 83.33  64.30 87.99
CodeT5-base Fine-tuning 79.45 66.10 83.96 83.61 65.30 88.32
Prompt tuning | 79.76 66.10 84.39 83.99 65.40 88.74

RQ1: How effective is the prompt tuning in solving code intelligence tasks?

* Finding 1: Prompt tuning is more effective than fine-tuning on the code intelligence tasks, with respect to different pre-trained

models and different programming languages. Besides, the advantage of prompt tuning is more obvious for smaller pre-trained

models.

25



Experiment: Data Scarcity Scenarios

RQ2: How capable is prompt tuning to handle data scarcity scenarios?

* Experiment Setting 1: low-resource scenario, in which there are significantly few training instances
* Experiment Setting 2: cross-domain scenario, in which the model is trained on a similar data-sufficient domain and tested on

target domain. (transfer learning)

Table 6: Classification accuracy (%) on defect detection in low-resource scenario. ‘-’ denotes the model fails to converge due to
extreme lack of training data.

Method Zero shot 16 shots 32 shots 64 shots 128 shots
CoRBERT oo uiog | 399  sasn  ssen  sazm e
CodeTo-small o i mng | - . 3z 3% 3500
ColeTsbose poirmnng| - - szae  ssAz s

To avoid randomness in data selection, we produce each subset five times with different

seeds and run four times on each dataset. The average results are reported.
26



Experiment: Data Scarcity Scenarios

RQ2: How capable is prompt tuning to handle data scarcity scenarios?

* Experiment Setting 1: low-resource scenario, in which there are significantly few training instances

s CodeT5-small CodeT5-small s CodeT5-base CodeT5-base
fine-tuning prompt tuning fine-tuning prompt tuning
12
11
10
9
8
7
6
5
4
100 200 300 500 1000 100 200 300 500 1000 100 200 300 500 1000
(a) Ruby (b) JavaScript (c) Go
16 19
14 17
12 15
13
10
11
8
6 ] ._.-:.-'
.-". ..'
4 2 A
100 200 300 500 1000 100 200 300 500 1000 100 200 300 500 1000
(d) Python (e) Java (f) PHP

Figure 4: Results of fine-tuning and prompt tuning on code summarization task in low resource scenarios. The horizontal axis

indicates the number of training instances while the vertical axis means the BLEU-4 score.
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Experiment: Data Scarcity Scenarios

. . . i ‘>
RQ2: How capable is prompt tuning to handle data scarcity scenarios? G o (T T —

language code summarization. The models are trained on
Python or Java datasets, and tested on Ruby, JavaScript and

a similar data-sufficient domain and tested on target domain. Go, respectively.

* Experiment Setting 2: cross-domain scenario, in which the model is trained on

* The data sizes of languages such as Java and Python are greatly larger than — -
Training ‘ Methods Ruby JavaScript Go

those of languages including Javascript and Ruby

CodeT5-small

* Transfer learning: Transferring the knowledge of similar domains with Fine-tuning | 1275  12.37 1157
Python . ' ' )
sufficient data to the target domains Prompt tuning | 13.01 1235  12.15
- . Fine-tuni 12.20 11.45 10.96
« We perform training on the programming language Java or Python, and Java B,
Prompt tuning | 12.59 11.84 11.15
evaluate on the language with fewer data such as Ruby, JavaScript, and Go.

CodeT5-base
Pythion Fine—tunin'g 13.06 12.81 12.89
.. . . . . Prompt tuning | 13.37 13.11 14.27

* Finding 2: Prompt tuning is more effective in low-resource

Fine-tuning 12.67 11.50 11.88
scenarios than fine-tuning. The fewer training instances, the Java | pompt tuning | 13.13 1199 12.96

larger the improvement achieved by prompt tuning. Besides,

prompt tuning also shows superior performance on the

cross-domain code intelligence task.
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Experiment: Data Scarcity Scenarios

RQ3: How different prompt templates affect the performance of prompt tuning?

1. hard prompt template (manually defined)
2. hard prompt v.s. vanilla soft prompt;

3. length of prefix soft prompt.

Table 10: Results (BLEU-4 scores) of prompt tuning with different prompt templates on the code summarization task. There
is no verbalizer for the prompts of generation tasks.

Jorompt (+) ‘ Ruby JavaScript Go  Python Java PHP | Overall

Summarize [LANG] [X] [Z] 1345 15.01 21.20 17.82 1843 2452 | 18.41

[SOFT] * 2 [X] [2] 13.33 1496 2117 17.93 1829 24.61 | 18.38

CodeT5-small  Generate comments for [LANG] [X] [Z] | 1344 1496 2124 1790 1852 24.46 | 18.42
[SOFT] + 4 [X] [Z] 13.49 14.87 2129 1792 1834 2468 | 18.44

Summarize [LANG] [X] [Z] 13.67 15.91 2251 1800 1963 2576 | 19.25

[SOFT] # 2 [X] [Z] 13.86 1575 2248 1812 1952 2591 | 19.27

CodeT5-base  Generate comments for [LANG] [X][Z] | 13.68 15.84 2249 1803 1959 2588 | 19.25
[SOFT] * 4 [X] [Z] 13.74 15.82 2263 1806 19.60 25.83 | 19.28

* Finding 3: Template design for hard prompt is more important for the classification
task than the generation task. Too short or long lengths of prefix prompts can
degrade the model performance. Hard prompts present better prediction accuracy

than the corresponding vanilla soft prompts.

Table 8: Classification accuracy (%) of comparing the perfor-
mance of CodeBERT model on defect detection task via dif-
ferent prompt templates. The verbalizer is fixed as +: “bad",
“defective"; —:“perfect", “clean". The underlined texts are re-
placed by virtual tokens in the corresponding vanilla soft
prompt.

Hard Prompt Vanilla Soft Prompt H;—‘xrcdcuragzﬂ
[X] The code is [Z] [X] [SOFT] =3 [Z] | 63.68 63.15
A [Z] code [X] [SOFT] [X] [SOFT] [Z] | 6336 62.95
[X] Itis [Z] [X] [SOFT][SOFT] [Z] | 6392 6339

The code [X] is [Z] [SOFT] =2 [X] [SOFT] [Z] | 64.17 6334

Table 9: Classification accuracy (%) of different verbalizers
on the defect detect task, where the pre-trained model is
CodeBERT. The template is “The code [X] is [Z]”.

Verbalizer | Accuracy
+: “Yes" —: “No" | 63.08
+: “bad" —: “perfect” | 63.71
+: “bad’, “defective” —: “clean", “perfect” | 64.17
+: “bad" “defective”. i -
“a i "e“ec ive : insecuri: R
—: “clean", “perfect”, “secure
+: “bad", “defective", “insecure", “vulnerable
% . " " s " 63.10
—: “clean”, “perfect”, “secure”, “invulnerable
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Experiment: Case Study

Turntabler.AuthorizedUser.update_laptop”, "original_string": "def update_laptop(name)
assert_valid_values(name, *%w(mac pc linux chrome iphone cake intel android))
api('user.modify', :laptop => name)
self.attributes = {'laptop' => name}
true

end”, "language": "ruby", "code": "def update_laptop(name)
assert_valid_values(name, *%w(mac pc linux chrome iphone cake intel android))
api('user.modify', :laptop => name)
self.attributes = {'laptop' => name}
true

end

(a) Ground truth comment: | 'pdates the laptop currently being used
(b) Comment generated by fine-tuning: Modify the laptop.
(c) Comment generated by prompt tuning: [ /pdate the laptop.

Figure 6: Case study on the code summarization task, where
the pre-trained model is CodeT5-small.

public virtual bool
contains(object o){

return indexO0f(o) != -1; }
}

(a) Original C# code

public boolean contains(Object o) {
return indexO0f(o) != -1;

(b) Ground truth Java code

public boolean contains(Object o) public boolean contains(Object o) {
{ return index0f(o) != -1;

return indexOf(o0); }
}

(c) Generated Java code by fine-tuning (d) Generated Java code by prompt tuning

Figure 7: Case study on the code translation task, where the
pre-trained model is CodeT5-small.
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Future Directions

* Consider more characteristics of source code: like syntactic structures, in the design of template and the choices
of verbalizer. Domain knowledge plays an important role on the design of prompts.
* How to better utilize “Code Structure Information/Code Context”

InputExample(
guid = 1,
text_a = code_tokens[i] + ' Identifier Names: ' + identifiers[i],
text b = classes[i][:-2] + ' File Name: ' + file names[i][:-2] +
parse _comment(signatures[i]),
tgt text = names[i],

, Method Signature: +

* Interpretability and Robustness: through constructing cloze-style prompt template, the factual knowledge and
biases contained in the pre-trained models can be investigated. Researchers can focus on improving the

interpretability and robustness of pre-trained models and designing novel pre-training tasks in the future
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Threats to Validity

* Limited Datasets: To mitigate this issue, we choose the most widely-used datasets for each code-related task, modify
the seeds and run the sampling multiple times. We also plan to collect more datasets in the future to better evaluate
the

* Limited downstream tasks: Our experiments are conducted on three code intelligence tasks, including one
classification task and two generation tasks. Although these tasks are the representative ones in code intelligence,
there are many other tasks, such as code search and bug fixing. We believe that we could obtain similar observations
on these tasks since they can all be formulated as either classification tasks or generation tasks for source code. We
will evaluate more tasks with prompt tuning in our future work.

* Suboptimal prompt design: We demonstrate that prompt tuning can improve the performance of pre-trained models.
However, the prompts we use in this paper may not be the best ones. It is challenging to design the best prompt

templates and verbalizers, which will be an interesting future work.
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Why is this paper accepted?

» Sufficient experiment work: > 200 experiments (3 tasks x 6 languages x 2 PLMs x 3 prompts, 4*V100 128GB)
* Prospective study: the first paper using prompt tuning (remains unexplored)
* Solid Logic Chain: Introduction part of the paper

* Convincing Baselines: Compared with fine-tuning/transformer etc.

Code translation

BLEU = Accuracy CodeBLEU  BLEU = Accuracy  CodeBLEU

Naive copy 1869 0O - 1854 0

Transformer 5047 = 37.90 61.59 5584  33.00 63.74

RoBERTa (code)  71.99 = 57.90 80.18 7746  56.10 83.07

CodeBERT 7214 58.00 79.41 79.92 | 59.00 85.10
CodeT5-small  Fine-tuning 78.67 6540 82.55 8229 6380 87.01
CodeT5-small  Prompt tuning 79.59  66.00 83.06 8333 64.30 87.99
CodeT5-base Fine-tuning 7945  66.10 83.96 83.61 | 6530 88.32

CodeT5-base Prompt tuning 79.76  66.10 84.39 8399 65.40 88.74



Reflection: Advantages of prompt

* A new and universal paradigm of NLP: close the gap between pre-training and fine-tuning

e Qutperforr

* Abetterw
* Weca
* Forex
e “Code
* Wene

Stages

Traditional machine
learning

Neural network
methods enhanced by
word2vec

The fine-tune method
represented by BERT

The prompt approach
represented by GPT3

https://zhuanlan.zhihu.com/p/442486331
https://zhuanlan.zhihu.com/p/399295895
https://www.bilibili.com/video/BV1Sfdylg7ra

Downstream Pre-trained
Tasks LMs

i}
OJe—{

O—{

®m Prompting methods make

0 more modalities of signals (e.g. image)

connected using natural language as relay

node

m New view for human to interact with

data in the world

Reasons

No pre-training language model

The pre-trained language model
plays the role of initializing the
input text signal

The pre-trained language model is responsible for
extracting high-level features from the input text

image more
CLIP: Radford § gt
1 ral2021 sult prediction
text )
video speech

ate as:

ller: xxxxx,
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Reflection: Criticisms of prompt

o BT IHMEFIEN, , . I{Cdeep learning®i & 4 1 i BEfeature engineering, T]E % 7 promptiX
B ¥k FtemplateFlanswer~NiE Zfeature engineeringlik .

* promptENHFNRIIE, EERSEFEALHEAKR. AREEMINGESE, o DUR/NMREEFS
8] + YRR E AR + /NMERRNBIRTT, ENALZRURMET £ Efinetune, I RANIEHE
BENZRE Y,

« BuAETINGEERSEHE ZMOBAFENRRT, BRI EESprompt ASHTHRR T, 1B
KF Fprompt PR finetuningUABLSE, B DU S R Sprompt BB RFT RS, MR RE
| WRLEN = E], FAkR#EIT NFES BT E.

« Hard Prompt¥# 1% 1T, AutoPromptRUZRAE T, SoftPromptX =B FEIRE KRS, verbalizeriZ ittt R
R o

https://zhuanlan.zhihu.com/p/442486331
https://zhuanlan.zhihu.com/p/399295895
https://www.bilibili.com/video/BV1Sfdylg7ra



Reflection: preprocessing tricks

 Filter by Length: too long/short seq is abnormal (>128, <3)

» Subword/Split words: getResponese => get response

* Lowercase: GET => get

* Concat Single Chars: CONSTANT _NameAndType => constant name and type
* Remove/Preserve punctuation

e AST Structure: javalang, tree-sitter

programtokens=javalang.tokenizer.tokenize(programtext)
res = ["{} {}".format(token._ class_ . name_ , token.value) for token in programtokens]
print(programtext[:106]+"'\n")
print(', '.join(res[:20]))
v 03s Python

public static int BubbleSortFloat2(float[] num) {
int last_exchange;
int right_border = num.length

Modifier public, Modifier static, BasicType int, Identifier BubbleSortFloat2, Separator (, BasicType float,
Separator [, Separator ], Identifier num, Separator ), Separator {, BasicType int, Identifier last_exchange,
Separator ;, BasicType int, Identifier right_border, Operator =, Identifier num, Separator ., Identifier length
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Reflection: AST

MethodDeclaration(annotations=[], body=[LocalVariableDeclaration(annotations=[], declarators=
[VariableDeclarator(dimensions=[], initializer=None, name=last exchange)], modifiers=set(),
type=BasicType(dimensions=[], name=int)), LocalVariableDeclaration(annotations=[], declarators=
[VariableDeclarator(dimensions=[], initializer=BinaryOperation(operandl=MemberReference(member=1length,
postfix_operators=[], prefix_operators=[], qualifier=num, selectors=[]), operandr=Literal(postfix_operators=[],
prefix_operators=[], qualifier=None, selectors=[], value=1l), operator=-), name=right border)], modifiers=set(),
type=BasicType(dimensions=[], name=int)), DoStatement(body=BlockStatement(label=None, statements=
[StatementExpression(expression=Assignment(expressionl=MemberReference(member=1last_exchange, postfix operators=[],
prefix_operators=[], qualifier=, selectors=[]), type==, value=Literal(postfix operators=[], prefix_operators=[],
qualifier=None, selectors=[], value=0)), label=None), ForStatement(body=BlockStatement(label=None, statements=
[IfStatement(condition=BinaryOperation(operandl=MemberReference(member=num, postfix operators=[], prefix operators=
[], qualifier=, selectors=[ArraySelector(index=MemberReference(member=j, postfix operators=[], prefix_operators=[],
qualifier=, selectors=[]))]), operandr=MemberReference(member=num, postfix operators=[], prefix_operators=[],
qualifier=, selectors=[ArraySelector(index=BinaryOperation(operandl=MemberReference(member=j, postfix_operators=[],
prefix_operators=[], qualifier=, selectors=[]), operandr=Literal(postfix_operators=[], prefix_operators=[],
qualifier=None, selectors=[], value=1), operator=+))]), operator=>), else statement=None, label=None,
then_statement=BlockStatement(label=None, statements=[LocalVariableDeclaration(annotations=[], declarators=
[VariableDeclarator(dimensions=[], initializer=MemberReference(member=num, postfix_operators=[], prefix_ operators=
[], qualifier=, selectors=[ArraySelector(index=MemberReference(member=j, postfix operators=[], prefix_operators=[],
qualifier=, selectors=[]))]), name=temp)], modifiers=set(), type=BasicType(dimensions=[], name=float)),
StatementExpression(expression=Assignment(expressionl=MemberReference(member=num, postfix operators=[],
prefix_operators=[], qualifier=, selectors=[ArraySelector(index=MemberReference(member=j, postfix_operators=[],
prefix_operators=[], qualifier=, selectors=[]))]), type==, value=MemberReference(member=num, postfix operators=[],
prefix_operators=[], qualifier=, selectors=[ArraySelector(index=BinaryOperation(operandl=MemberReference(member=j,
postfix_operators=[], prefix_operators=[], qualifier=, selectors=[]), operandr=Literal(postfix_operators=[],
prefix_operators=[], qualifier=None, selectors=[], value=1), operator=+))])), label=None),
StatementExpression(expression=Assignment(expressionl=MemberReference(member=num, postfix_operators=[],
prefix_operators=[], qualifier=, selectors=[ArraySelector(index=BinaryOperation(operandl=MemberReference(member=j,
postfix_operators=[], prefix_operators=[], qualifier=, selectors=[]), operandr=Literal(postfix_operators=[],
prefix_operators=[], qualifier=None, selectors=[], value=1), operator=+))]), type==,
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Conclusion

» Keywords/SVM/TF-IDF => RNN/LSTM/GRU => Transformer => BERT => Fine-tuning => Prompt Tuning?
e If it works in code summarization, it should also work in other areas, such as method name prediction.
* Prompt tuning might provide us with a new approach to combine and utilize different contexts.

* Use domain knowledge(downstream task characteristics) to help design prompt templates.
* To make improvements / further study

» Data Cleaning/Preprocessing: Avoid “Garbage In, Garbage Out”, what about the quality of training

corpus? Could we make some rules/tools to standardize them first?
* Prompt Ensemble

* How to discover and utilize more contexts

Better Methods, More Contexts, Better Utilization



Thanks

Zhu lJie
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