
AutoTransform: Automated Code Transformation

to Support Modern Code Review Process

2022 44th IEEE/ACM International Conference on Software Engineering (ICSE)

1

Presenter: Zhu Jie

2022.4.28

2

Patanamon Thongtanunam
Lecture (2017 - Now)

University of Melbourne

• Code Review
• Mining Software Repositories
• Understanding and Improving

Developer collaboration practices

Chanathip Pornprasit
PhD student of Monash
University

• Natural Language
Processing

• Software Defects Prediction

Chakkrit Tantithamthavorn
Senior Research Fellow (2017 - Now)
Monash University

Monash's Software Engineering
Discipline Group Lead

• Software Defects Prediction

Authors

Authors
Patanamon Thongtanunam
Lecture (2017 - Now) University of Melbourne

• Code Review

• Mining Software Repositories

• Understanding and Improving Developer

collaboration practices

3https://patanamon.com/

Authors
Chanathip Pornprasit

PhD student of Monash University

• Natural Language Processing

• Software Defects Prediction

4https://ieeexplore.ieee.org/author/37088457315

Authors
Chakkrit Tantithamthavorn

Senior Research Fellow (2017 - Now) Monash University

Monash's Software Engineering Discipline Group Lead

• Software Defect Prediction

5

Why Choose This Paper?

6

• New: ICSE’22 Paper

• Well-known Method: Transformer-based model + BPE(byte pair encoding)

• Related Area: a Code Review paper

• Open: Replication Package available on GitHub

• Compare with a Top-research-conference paper: a shortcut to publish?

Background

Code Comment/Summarization/Review

8

What is the difference among code comment, summarization and review comment?

• Code Comment: Explain how your program works, and your intentions behind it

• Code Summarization: Generate a readable summary that describes the functionality of a program

 Code summarization focuses more on the logic and functionality of code

 Code comment is more flexible

• Code Review Comment: Point out the problem (Focus on the changed part)

[1] 北京智源研究院青源LIVE第43期 | MSRA卢帅：自动化代码审查过程的研究 https://www.bilibili.com/video/BV1c34y147AQ

Background

9[1] 北京智源研究院青源LIVE第43期 | MSRA卢帅：自动化代码审查过程的研究 https://www.bilibili.com/video/BV1c34y147AQ

Overview of Code Review Process: Three Automation Tasks

• Task1: Quality Estimation (binary classification: code pair => accept or reject)

• Task2: Review Comment Generation (code pair => review text)

• Task3: Code Refinement (code pair + review text => refined code)

Automatic Code Review by Learning the Revision of
Source Code (AAAI19)

Background

10[1] SANER22. Where Should I Look at? Recommending Lines that Reviewers Should Pay Attention To

Overview of Code Review Process: Three Automation Tasks

• Task1: Quality Estimation (binary classification: code pair => accept or reject)

• Task2: Review Comment Generation (code pair => review text)

• Task3: Code Refinement (code pair + review text => refined code)

Where Should I Look at? Recommending Lines that
Reviewers Should Pay Attention To (SANER22)

Defect Prediction
Code Smell

Bug Fixes
Program Repair

Refactoring

Related Work: Task1

11
[1] AAAI19. Automatic Code Review by Learning the Revision of Source Code (NJU lamda + David Lo)

Automatic Code Review by Learning the Revision of Source Code

• Paper Information: AAAI’19 (from NJU lamda + David Lo)

• Motivation: learning the revision features

• Task: Binary classification (approve or reject)

• Technique: CNN + BiLSTM + Auto Encoder

Related Work: Task2

12

AUGER: Automatically Generating Review Comments with Pre-training Models

• Paper Information: By Li Lingwei

• Task: Review comment generation (text generation)

• Technique: T5-based Pretraining Model

Related Work: Task3

13

• Paper Information: ICSE’19 from Tufano

• Related Task: Bug-Fixes / Code Edit

• Method: LSTM-based NMT + Code abstraction

• Expression:

 From quantitative analysis to qualitative

analysis (empirical study of the ability of

an NMT model)

 Meaningful Code Changes (Reviewed and

Merged PRs)

On Learning Meaningful Code Changes via Neural Machine Translation

[1] EMNLP19. Encode, Tag, Realize: High-Precision Text Editing (from Google Research)

Related Work: Task3

14

• Paper Information: ICSE’21 from Tufano

• Target Task: Code Review Comment Generation + Code Refinement

Towards Automating Code Review Activities

Related Work: Task3

15

• Paper Information: ICSE’21 from Tufano

• Target Task: Code Refinement

Towards Automating Code Review Activities

[1] EMNLP19. Encode, Tag, Realize: High-Precision Text Editing (from Google Research)

Motivation: Limitation of RNN-based Method

16

• Limitation 1: Unknown identifiers/literals for the new tokens appearing in the after version.

 New tokens: tokens that did not appear in the before version. (80% methods contain “New tokens”)

 Due to the limitation of code abstraction.

• Limitation 2: Suboptimal performance when the sequences become longer.

 RNN has difficulties in remembering long-term dependencies.

On Learning Meaningful Code Changes via Neural Machine Translation (ICSE’19 Tufano)

Dataset Detail

17

Dataset Detail

18

Code Refinement

Long-term
Dependency

New Tokens

Overview

19

• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Task: Buggy Code => Refined Code

• Experiment: Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process

Overview

20

• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Target Task: Buggy Code => Refined Code

• Experiment: Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process

BPE: Byte Pair Encoding

21
[1] ACL’16. Neural Machine Translation of Rare Words with Subword Units

BPE: Byte Pair Encoding

22

createCommentEditor =>
create@@ comment@@ editor

[1] ACL’16. Neural Machine Translation of Rare Words with Subword Units

Code Abstraction

23[1] ICSE’21. Towards Automating Code Review Activities (from Tufano)

Experiment: Ablation Study

24

Overview

25

• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Task: Buggy Code => Refined Code

• Experiment: Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process

Transformer

26

[1] 国科大自然语言处理（刘洋）https://www.bilibili.com/video/BV1qy4y1r7M7
[2] 李宏毅2021机器学习 Self-Attention机制 https://www.bilibili.com/video/BV1154y1J76o?p=9
[3] Transformer论文逐段精读【论文精读】李沐 https://www.bilibili.com/video/BV1pu411o7BE
[4] 斯坦福cs224n word2vec介绍: https://www.bilibili.com/video/BV1pt411h7aT?p=2
[5] https://github.com/km1994/NLP-Interview-Notes/tree/main/DeepLearningAlgorithm/transformer

• Seq2Seq: Encoder-Decoder (RNN/LSTM)

• Self Attention

• Layer Normalization(compared to Batch Normalization)

• Masked Multi-Head Attention

• Implementation using Tensor2Tensor

Transformer

27

• Seq2Seq: Encoder-Decoder (RNN/LSTM)

Transformer

28

• Seq2Seq + Self-Attention

Why Transformer? Limitation of RNN/LSTM/CNN

29

Why Transformer? Limitation of RNN/LSTM

30

• RNN/LSTM has difficulties in

remembering long-term

dependencies (suboptimal for

processing long sequences)

• Hard to parallel (Slow)

Why Transformer? Limitation of TextCNN

31

• Could not capture long-term

dependencies: TextCNN is an

“improved n-gram model”

(limited-size filter & max-pooling)

• Benefit from word2vec (better

word representation)

So, Self-Attention is all you need!

32

Transformer

33

[1] 国科大自然语言处理（刘洋）https://www.bilibili.com/video/BV1qy4y1r7M7
[2] 李宏毅2021机器学习 Self-Attention机制 https://www.bilibili.com/video/BV1154y1J76o?p=9
[3] Transformer论文逐段精读【论文精读】李沐 https://www.bilibili.com/video/BV1pu411o7BE
[4] 斯坦福cs224n word2vec介绍: https://www.bilibili.com/video/BV1pt411h7aT?p=2
[5] https://github.com/km1994/NLP-Interview-Notes/tree/main/DeepLearningAlgorithm/transformer

Transformer

34

• Seq2Seq + Self-Attention

Transformer: Summary

35

• Advantages:

 Solve Long-term dependencies: Distance between any token is 1

 Easy to parallel: fast training

• Disadvantages:

 Fail to capture local features

 Positional Encoding

Overview

36

• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Task: Buggy Code => Refined Code

• Experiment: Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process

Overview

37

• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Task: Buggy Code => Refined Code

• Experiment: Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process

Experiment

38

Experiment: Ablation Study

39

Experiment: Ablation Study

40

Experiment: Ablation Study

41

Experiment: Source Code Pre-processing

42
[1] https://github.com/micheletufano/src2abs
[2] https://tufanomichele.com/

Evaluation

43
1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%

Evaluation

44

• Improve by 5%-7%

• No BLEU statistics: BLEU should not be used

to evaluate the code transformation since

the sequences that are similar

Compare to ICSE’21?

1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%

ICSE21

Evaluation

45

• Inferior to 2-encoder Transformer(ICSE21’)

• Because 2-encoder imports NL comments

which could guide the revision

Compare to ICSE’21?

1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%

Reflection: Transformer + ?

46[1] https://tufanomichele.com/

A List of SE Papers by Tufano based on Transformer

• Ph.D. Thesis: Learning Code Transformations via Neural Machine Translation

• ICSE 2021: Towards Automating Code Review Activities

• ICSE 2020: On learning meaningful assert statements for unit test cases

• TSE 2019: SEQUENCER: Sequence-to-Sequence Learning for End-to-End Program Repair

• TOSEM 2019: An Empirical Investigation into Learning Bug-Fixing Patches in the Wild via Neural Machine Translation

• ICSE 2019: On Learning Meaningful Code Changes via Neural Machine Translation

• Unit Test Case Generation with Transformers

• Generating Accurate Assert Statements for Unit Test Cases using Pretrained Transformers

Reflection: Transformer + ?

47[1] https://ml4code.github.io/tags.html#Transformer

Thanks

Zhu Jie

2022.04.28

