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Why Choose This Paper?
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• New: ICSE’22 Paper

• Well-known Method: Transformer-based model + BPE(byte pair encoding)

• Related Area: a Code Review paper 

• Open: Replication Package available on GitHub

• Compare with a Top-research-conference paper: a shortcut to publish?



Background



Code Comment/Summarization/Review
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What is the difference among code comment, summarization and review comment?

• Code Comment: Explain how your program works, and your intentions behind it

• Code Summarization: Generate a readable summary that describes the functionality of a program

 Code summarization focuses more on the logic and functionality of code

 Code comment is more flexible

• Code Review Comment: Point out the problem (Focus on the changed part)

[1] 北京智源研究院青源LIVE第43期 | MSRA卢帅：自动化代码审查过程的研究 https://www.bilibili.com/video/BV1c34y147AQ
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Overview of Code Review Process: Three Automation Tasks

• Task1: Quality Estimation (binary classification: code pair => accept or reject)

• Task2: Review Comment Generation (code pair => review text)

• Task3: Code Refinement (code pair + review text => refined code)

Automatic Code Review by Learning the Revision of 
Source Code (AAAI19)
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Overview of Code Review Process: Three Automation Tasks

• Task1: Quality Estimation (binary classification: code pair => accept or reject)

• Task2: Review Comment Generation (code pair => review text)

• Task3: Code Refinement (code pair + review text => refined code)

Where Should I Look at? Recommending Lines that 
Reviewers Should Pay Attention To (SANER22)

Defect Prediction
Code Smell

Bug Fixes
Program Repair

Refactoring



Related Work: Task1
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[1] AAAI19. Automatic Code Review by Learning the Revision of Source Code (NJU lamda + David Lo) 

Automatic Code Review by Learning the Revision of Source Code 

• Paper Information: AAAI’19 (from NJU lamda + David Lo) 

• Motivation: learning the revision features

• Task: Binary classification (approve or reject)

• Technique: CNN + BiLSTM + Auto Encoder



Related Work: Task2
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AUGER: Automatically Generating Review Comments with Pre-training Models

• Paper Information: By Li Lingwei

• Task: Review comment generation (text generation)

• Technique: T5-based Pretraining Model



Related Work: Task3
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• Paper Information: ICSE’19 from Tufano

• Related Task: Bug-Fixes / Code Edit

• Method: LSTM-based NMT + Code abstraction

• Expression:

 From quantitative analysis to qualitative

analysis (empirical study of the ability of 

an NMT model)

 Meaningful Code Changes (Reviewed and 

Merged PRs)

On Learning Meaningful Code Changes via Neural Machine Translation

[1] EMNLP19. Encode, Tag, Realize: High-Precision Text Editing (from Google Research)



Related Work: Task3
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• Paper Information: ICSE’21 from Tufano

• Target Task: Code Review Comment Generation + Code Refinement

Towards Automating Code Review Activities



Related Work: Task3
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• Paper Information: ICSE’21 from Tufano

• Target Task: Code Refinement

Towards Automating Code Review Activities

[1] EMNLP19. Encode, Tag, Realize: High-Precision Text Editing (from Google Research)



Motivation: Limitation of RNN-based Method
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• Limitation 1: Unknown identifiers/literals for the new tokens appearing in the after version.

 New tokens: tokens that did not appear in the before version. (80% methods contain “New tokens”)

 Due to the limitation of code abstraction.

• Limitation 2: Suboptimal performance when the sequences become longer. 

 RNN has difficulties in remembering long-term dependencies.

On Learning Meaningful Code Changes via Neural Machine Translation (ICSE’19 Tufano)



Dataset Detail
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Dataset Detail
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Code Refinement

Long-term 
Dependency

New Tokens



Overview
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• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Task: Buggy Code => Refined Code

• Experiment:  Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process
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BPE: Byte Pair Encoding
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[1] ACL’16. Neural Machine Translation of Rare Words with Subword Units



BPE: Byte Pair Encoding
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createCommentEditor =>
create@@   comment@@   editor

[1] ACL’16. Neural Machine Translation of Rare Words with Subword Units



Code Abstraction
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Experiment: Ablation Study
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• Task: Buggy Code => Refined Code

• Experiment:  Ablation study to quantify the contributions of the two components (BPE and Transformer)
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Transformer
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[1] 国科大自然语言处理（刘洋）https://www.bilibili.com/video/BV1qy4y1r7M7
[2] 李宏毅2021机器学习 Self-Attention机制 https://www.bilibili.com/video/BV1154y1J76o?p=9
[3] Transformer论文逐段精读【论文精读】李沐 https://www.bilibili.com/video/BV1pu411o7BE
[4] 斯坦福cs224n word2vec介绍: https://www.bilibili.com/video/BV1pt411h7aT?p=2
[5] https://github.com/km1994/NLP-Interview-Notes/tree/main/DeepLearningAlgorithm/transformer

• Seq2Seq: Encoder-Decoder (RNN/LSTM)

• Self Attention

• Layer Normalization(compared to Batch Normalization)

• Masked Multi-Head Attention

• Implementation using Tensor2Tensor



Transformer
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• Seq2Seq: Encoder-Decoder (RNN/LSTM)



Transformer
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• Seq2Seq + Self-Attention



Why Transformer? Limitation of RNN/LSTM/CNN
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Why Transformer? Limitation of RNN/LSTM
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• RNN/LSTM has difficulties in 

remembering long-term 

dependencies (suboptimal for 

processing long sequences)

• Hard to parallel (Slow)



Why Transformer? Limitation of TextCNN
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• Could not capture long-term 

dependencies: TextCNN is an 

“improved n-gram model” 

(limited-size filter & max-pooling)

• Benefit from word2vec (better 

word representation)



So, Self-Attention is all you need!
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Transformer
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[1] 国科大自然语言处理（刘洋）https://www.bilibili.com/video/BV1qy4y1r7M7
[2] 李宏毅2021机器学习 Self-Attention机制 https://www.bilibili.com/video/BV1154y1J76o?p=9
[3] Transformer论文逐段精读【论文精读】李沐 https://www.bilibili.com/video/BV1pu411o7BE
[4] 斯坦福cs224n word2vec介绍: https://www.bilibili.com/video/BV1pt411h7aT?p=2
[5] https://github.com/km1994/NLP-Interview-Notes/tree/main/DeepLearningAlgorithm/transformer



Transformer
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• Seq2Seq + Self-Attention



Transformer: Summary
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• Advantages:

 Solve Long-term dependencies: Distance between any token is 1

 Easy to parallel: fast training

• Disadvantages:

 Fail to capture local features

 Positional Encoding
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Experiment
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Experiment: Ablation Study

39



Experiment: Ablation Study
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Experiment: Ablation Study
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Experiment: Source Code Pre-processing
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[1] https://github.com/micheletufano/src2abs 
[2] https://tufanomichele.com/



Evaluation
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1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%



Evaluation
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• Improve by  5%-7% 

• No BLEU statistics: BLEU should not be used 

to evaluate the code transformation since 

the sequences that are similar

Compare to ICSE’21?

1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%

ICSE21



Evaluation
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• Inferior to 2-encoder Transformer(ICSE21’)

• Because 2-encoder imports NL comments 

which could guide the revision

Compare to ICSE’21?

1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%



Reflection: Transformer + ?
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A List of SE Papers by Tufano based on Transformer 

• Ph.D. Thesis: Learning Code Transformations via Neural Machine Translation

• ICSE 2021: Towards Automating Code Review Activities

• ICSE 2020: On learning meaningful assert statements for unit test cases

• TSE  2019: SEQUENCER: Sequence-to-Sequence Learning for End-to-End Program Repair

• TOSEM 2019: An Empirical Investigation into Learning Bug-Fixing Patches in the Wild via Neural Machine Translation

• ICSE 2019: On Learning Meaningful Code Changes via Neural Machine Translation

• Unit Test Case Generation with Transformers

• Generating Accurate Assert Statements for Unit Test Cases using Pretrained Transformers



Reflection: Transformer + ?
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