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Why Choose This Paper?
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• New: ICSE’22 Paper

• Well-known Method: Transformer-based model + BPE(byte pair encoding)

• Related Area: a Code Review paper 

• Open: Replication Package available on GitHub

• Compare with a Top-research-conference paper: a shortcut to publish?



Background



Code Comment/Summarization/Review
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What is the difference among code comment, summarization and review comment?

• Code Comment: Explain how your program works, and your intentions behind it

• Code Summarization: Generate a readable summary that describes the functionality of a program

 Code summarization focuses more on the logic and functionality of code

 Code comment is more flexible

• Code Review Comment: Point out the problem (Focus on the changed part)

[1] 北京智源研究院青源LIVE第43期 | MSRA卢帅：自动化代码审查过程的研究 https://www.bilibili.com/video/BV1c34y147AQ
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Overview of Code Review Process: Three Automation Tasks

• Task1: Quality Estimation (binary classification: code pair => accept or reject)

• Task2: Review Comment Generation (code pair => review text)

• Task3: Code Refinement (code pair + review text => refined code)

Automatic Code Review by Learning the Revision of 
Source Code (AAAI19)
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Overview of Code Review Process: Three Automation Tasks

• Task1: Quality Estimation (binary classification: code pair => accept or reject)

• Task2: Review Comment Generation (code pair => review text)

• Task3: Code Refinement (code pair + review text => refined code)

Where Should I Look at? Recommending Lines that 
Reviewers Should Pay Attention To (SANER22)

Defect Prediction
Code Smell

Bug Fixes
Program Repair

Refactoring



Related Work: Task1
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[1] AAAI19. Automatic Code Review by Learning the Revision of Source Code (NJU lamda + David Lo) 

Automatic Code Review by Learning the Revision of Source Code 

• Paper Information: AAAI’19 (from NJU lamda + David Lo) 

• Motivation: learning the revision features

• Task: Binary classification (approve or reject)

• Technique: CNN + BiLSTM + Auto Encoder



Related Work: Task2
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AUGER: Automatically Generating Review Comments with Pre-training Models

• Paper Information: By Li Lingwei

• Task: Review comment generation (text generation)

• Technique: T5-based Pretraining Model



Related Work: Task3
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• Paper Information: ICSE’19 from Tufano

• Related Task: Bug-Fixes / Code Edit

• Method: LSTM-based NMT + Code abstraction

• Expression:

 From quantitative analysis to qualitative

analysis (empirical study of the ability of 

an NMT model)

 Meaningful Code Changes (Reviewed and 

Merged PRs)

On Learning Meaningful Code Changes via Neural Machine Translation

[1] EMNLP19. Encode, Tag, Realize: High-Precision Text Editing (from Google Research)



Related Work: Task3
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• Paper Information: ICSE’21 from Tufano

• Target Task: Code Review Comment Generation + Code Refinement

Towards Automating Code Review Activities



Related Work: Task3
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• Paper Information: ICSE’21 from Tufano

• Target Task: Code Refinement

Towards Automating Code Review Activities

[1] EMNLP19. Encode, Tag, Realize: High-Precision Text Editing (from Google Research)



Motivation: Limitation of RNN-based Method
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• Limitation 1: Unknown identifiers/literals for the new tokens appearing in the after version.

 New tokens: tokens that did not appear in the before version. (80% methods contain “New tokens”)

 Due to the limitation of code abstraction.

• Limitation 2: Suboptimal performance when the sequences become longer. 

 RNN has difficulties in remembering long-term dependencies.

On Learning Meaningful Code Changes via Neural Machine Translation (ICSE’19 Tufano)



Dataset Detail
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Dataset Detail
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Code Refinement

Long-term 
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Overview
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• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Task: Buggy Code => Refined Code

• Experiment:  Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process
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BPE: Byte Pair Encoding
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[1] ACL’16. Neural Machine Translation of Rare Words with Subword Units



BPE: Byte Pair Encoding
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createCommentEditor =>
create@@   comment@@   editor

[1] ACL’16. Neural Machine Translation of Rare Words with Subword Units



Code Abstraction
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Experiment: Ablation Study
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Transformer
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[1] 国科大自然语言处理（刘洋）https://www.bilibili.com/video/BV1qy4y1r7M7
[2] 李宏毅2021机器学习 Self-Attention机制 https://www.bilibili.com/video/BV1154y1J76o?p=9
[3] Transformer论文逐段精读【论文精读】李沐 https://www.bilibili.com/video/BV1pu411o7BE
[4] 斯坦福cs224n word2vec介绍: https://www.bilibili.com/video/BV1pt411h7aT?p=2
[5] https://github.com/km1994/NLP-Interview-Notes/tree/main/DeepLearningAlgorithm/transformer

• Seq2Seq: Encoder-Decoder (RNN/LSTM)

• Self Attention

• Layer Normalization(compared to Batch Normalization)

• Masked Multi-Head Attention

• Implementation using Tensor2Tensor



Transformer
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• Seq2Seq: Encoder-Decoder (RNN/LSTM)



Transformer
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• Seq2Seq + Self-Attention



Why Transformer? Limitation of RNN/LSTM/CNN
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Why Transformer? Limitation of RNN/LSTM
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• RNN/LSTM has difficulties in 

remembering long-term 

dependencies (suboptimal for 

processing long sequences)

• Hard to parallel (Slow)



Why Transformer? Limitation of TextCNN
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• Could not capture long-term 

dependencies: TextCNN is an 

“improved n-gram model” 

(limited-size filter & max-pooling)

• Benefit from word2vec (better 

word representation)



So, Self-Attention is all you need!
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Transformer
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[1] 国科大自然语言处理（刘洋）https://www.bilibili.com/video/BV1qy4y1r7M7
[2] 李宏毅2021机器学习 Self-Attention机制 https://www.bilibili.com/video/BV1154y1J76o?p=9
[3] Transformer论文逐段精读【论文精读】李沐 https://www.bilibili.com/video/BV1pu411o7BE
[4] 斯坦福cs224n word2vec介绍: https://www.bilibili.com/video/BV1pt411h7aT?p=2
[5] https://github.com/km1994/NLP-Interview-Notes/tree/main/DeepLearningAlgorithm/transformer



Transformer
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• Seq2Seq + Self-Attention



Transformer: Summary
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• Advantages:

 Solve Long-term dependencies: Distance between any token is 1

 Easy to parallel: fast training

• Disadvantages:

 Fail to capture local features

 Positional Encoding
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Experiment: Ablation Study
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Experiment: Ablation Study
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Experiment: Ablation Study
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Experiment: Source Code Pre-processing
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[1] https://github.com/micheletufano/src2abs 
[2] https://tufanomichele.com/



Evaluation
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1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%



Evaluation
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• Improve by  5%-7% 

• No BLEU statistics: BLEU should not be used 

to evaluate the code transformation since 

the sequences that are similar

Compare to ICSE’21?

1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%

ICSE21



Evaluation
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• Inferior to 2-encoder Transformer(ICSE21’)

• Because 2-encoder imports NL comments 

which could guide the revision

Compare to ICSE’21?

1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%



Reflection: Transformer + ?

46[1] https://tufanomichele.com/

A List of SE Papers by Tufano based on Transformer 

• Ph.D. Thesis: Learning Code Transformations via Neural Machine Translation

• ICSE 2021: Towards Automating Code Review Activities

• ICSE 2020: On learning meaningful assert statements for unit test cases

• TSE  2019: SEQUENCER: Sequence-to-Sequence Learning for End-to-End Program Repair

• TOSEM 2019: An Empirical Investigation into Learning Bug-Fixing Patches in the Wild via Neural Machine Translation

• ICSE 2019: On Learning Meaningful Code Changes via Neural Machine Translation

• Unit Test Case Generation with Transformers

• Generating Accurate Assert Statements for Unit Test Cases using Pretrained Transformers



Reflection: Transformer + ?

47[1] https://ml4code.github.io/tags.html#Transformer
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