
AutoTransform: Automated Code Transformation

to Support Modern Code Review Process

2022 44th IEEE/ACM International Conference on Software Engineering (ICSE)

1

Presenter: Zhu Jie

2022.4.28

2

Patanamon Thongtanunam
Lecture (2017 - Now)

University of Melbourne

• Code Review
• Mining Software Repositories
• Understanding and Improving

Developer collaboration practices

Chanathip Pornprasit
PhD student of Monash
University

• Natural Language
Processing

• Software Defects Prediction

Chakkrit Tantithamthavorn
Senior Research Fellow (2017 - Now)
Monash University

Monash's Software Engineering
Discipline Group Lead

• Software Defects Prediction

Authors

Authors
Patanamon Thongtanunam
Lecture (2017 - Now) University of Melbourne

• Code Review

• Mining Software Repositories

• Understanding and Improving Developer

collaboration practices

3https://patanamon.com/

Authors
Chanathip Pornprasit

PhD student of Monash University

• Natural Language Processing

• Software Defects Prediction

4https://ieeexplore.ieee.org/author/37088457315

Authors
Chakkrit Tantithamthavorn

Senior Research Fellow (2017 - Now) Monash University

Monash's Software Engineering Discipline Group Lead

• Software Defect Prediction

5

Why Choose This Paper?

6

• New: ICSE’22 Paper

• Well-known Method: Transformer-based model + BPE(byte pair encoding)

• Related Area: a Code Review paper

• Open: Replication Package available on GitHub

• Compare with a Top-research-conference paper: a shortcut to publish?

Background

Code Comment/Summarization/Review

8

What is the difference among code comment, summarization and review comment?

• Code Comment: Explain how your program works, and your intentions behind it

• Code Summarization: Generate a readable summary that describes the functionality of a program

 Code summarization focuses more on the logic and functionality of code

 Code comment is more flexible

• Code Review Comment: Point out the problem (Focus on the changed part)

[1] 北京智源研究院青源LIVE第43期 | MSRA卢帅：自动化代码审查过程的研究 https://www.bilibili.com/video/BV1c34y147AQ

Background

9[1] 北京智源研究院青源LIVE第43期 | MSRA卢帅：自动化代码审查过程的研究 https://www.bilibili.com/video/BV1c34y147AQ

Overview of Code Review Process: Three Automation Tasks

• Task1: Quality Estimation (binary classification: code pair => accept or reject)

• Task2: Review Comment Generation (code pair => review text)

• Task3: Code Refinement (code pair + review text => refined code)

Automatic Code Review by Learning the Revision of
Source Code (AAAI19)

Background

10[1] SANER22. Where Should I Look at? Recommending Lines that Reviewers Should Pay Attention To

Overview of Code Review Process: Three Automation Tasks

• Task1: Quality Estimation (binary classification: code pair => accept or reject)

• Task2: Review Comment Generation (code pair => review text)

• Task3: Code Refinement (code pair + review text => refined code)

Where Should I Look at? Recommending Lines that
Reviewers Should Pay Attention To (SANER22)

Defect Prediction
Code Smell

Bug Fixes
Program Repair

Refactoring

Related Work: Task1

11
[1] AAAI19. Automatic Code Review by Learning the Revision of Source Code (NJU lamda + David Lo)

Automatic Code Review by Learning the Revision of Source Code

• Paper Information: AAAI’19 (from NJU lamda + David Lo)

• Motivation: learning the revision features

• Task: Binary classification (approve or reject)

• Technique: CNN + BiLSTM + Auto Encoder

Related Work: Task2

12

AUGER: Automatically Generating Review Comments with Pre-training Models

• Paper Information: By Li Lingwei

• Task: Review comment generation (text generation)

• Technique: T5-based Pretraining Model

Related Work: Task3

13

• Paper Information: ICSE’19 from Tufano

• Related Task: Bug-Fixes / Code Edit

• Method: LSTM-based NMT + Code abstraction

• Expression:

 From quantitative analysis to qualitative

analysis (empirical study of the ability of

an NMT model)

 Meaningful Code Changes (Reviewed and

Merged PRs)

On Learning Meaningful Code Changes via Neural Machine Translation

[1] EMNLP19. Encode, Tag, Realize: High-Precision Text Editing (from Google Research)

Related Work: Task3

14

• Paper Information: ICSE’21 from Tufano

• Target Task: Code Review Comment Generation + Code Refinement

Towards Automating Code Review Activities

Related Work: Task3

15

• Paper Information: ICSE’21 from Tufano

• Target Task: Code Refinement

Towards Automating Code Review Activities

[1] EMNLP19. Encode, Tag, Realize: High-Precision Text Editing (from Google Research)

Motivation: Limitation of RNN-based Method

16

• Limitation 1: Unknown identifiers/literals for the new tokens appearing in the after version.

 New tokens: tokens that did not appear in the before version. (80% methods contain “New tokens”)

 Due to the limitation of code abstraction.

• Limitation 2: Suboptimal performance when the sequences become longer.

 RNN has difficulties in remembering long-term dependencies.

On Learning Meaningful Code Changes via Neural Machine Translation (ICSE’19 Tufano)

Dataset Detail

17

Dataset Detail

18

Code Refinement

Long-term
Dependency

New Tokens

Overview

19

• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Task: Buggy Code => Refined Code

• Experiment: Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process

Overview

20

• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Target Task: Buggy Code => Refined Code

• Experiment: Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process

BPE: Byte Pair Encoding

21
[1] ACL’16. Neural Machine Translation of Rare Words with Subword Units

BPE: Byte Pair Encoding

22

createCommentEditor =>
create@@ comment@@ editor

[1] ACL’16. Neural Machine Translation of Rare Words with Subword Units

Code Abstraction

23[1] ICSE’21. Towards Automating Code Review Activities (from Tufano)

Experiment: Ablation Study

24

Overview

25

• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Task: Buggy Code => Refined Code

• Experiment: Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process

Transformer

26

[1] 国科大自然语言处理（刘洋）https://www.bilibili.com/video/BV1qy4y1r7M7
[2] 李宏毅2021机器学习 Self-Attention机制 https://www.bilibili.com/video/BV1154y1J76o?p=9
[3] Transformer论文逐段精读【论文精读】李沐 https://www.bilibili.com/video/BV1pu411o7BE
[4] 斯坦福cs224n word2vec介绍: https://www.bilibili.com/video/BV1pt411h7aT?p=2
[5] https://github.com/km1994/NLP-Interview-Notes/tree/main/DeepLearningAlgorithm/transformer

• Seq2Seq: Encoder-Decoder (RNN/LSTM)

• Self Attention

• Layer Normalization(compared to Batch Normalization)

• Masked Multi-Head Attention

• Implementation using Tensor2Tensor

Transformer

27

• Seq2Seq: Encoder-Decoder (RNN/LSTM)

Transformer

28

• Seq2Seq + Self-Attention

Why Transformer? Limitation of RNN/LSTM/CNN

29

Why Transformer? Limitation of RNN/LSTM

30

• RNN/LSTM has difficulties in

remembering long-term

dependencies (suboptimal for

processing long sequences)

• Hard to parallel (Slow)

Why Transformer? Limitation of TextCNN

31

• Could not capture long-term

dependencies: TextCNN is an

“improved n-gram model”

(limited-size filter & max-pooling)

• Benefit from word2vec (better

word representation)

So, Self-Attention is all you need!

32

Transformer

33

[1] 国科大自然语言处理（刘洋）https://www.bilibili.com/video/BV1qy4y1r7M7
[2] 李宏毅2021机器学习 Self-Attention机制 https://www.bilibili.com/video/BV1154y1J76o?p=9
[3] Transformer论文逐段精读【论文精读】李沐 https://www.bilibili.com/video/BV1pu411o7BE
[4] 斯坦福cs224n word2vec介绍: https://www.bilibili.com/video/BV1pt411h7aT?p=2
[5] https://github.com/km1994/NLP-Interview-Notes/tree/main/DeepLearningAlgorithm/transformer

Transformer

34

• Seq2Seq + Self-Attention

Transformer: Summary

35

• Advantages:

 Solve Long-term dependencies: Distance between any token is 1

 Easy to parallel: fast training

• Disadvantages:

 Fail to capture local features

 Positional Encoding

Overview

36

• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Task: Buggy Code => Refined Code

• Experiment: Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process

Overview

37

• Contribution: RNN(LSTM) => Transformer, Code Abstraction => BPE(byte pair encoding)

• Task: Buggy Code => Refined Code

• Experiment: Ablation study to quantify the contributions of the two components (BPE and Transformer)

AutoTransform: Automated Code Transformation to Support Modern Code Review Process

Experiment

38

Experiment: Ablation Study

39

Experiment: Ablation Study

40

Experiment: Ablation Study

41

Experiment: Source Code Pre-processing

42
[1] https://github.com/micheletufano/src2abs
[2] https://tufanomichele.com/

Evaluation

43
1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%

Evaluation

44

• Improve by 5%-7%

• No BLEU statistics: BLEU should not be used

to evaluate the code transformation since

the sequences that are similar

Compare to ICSE’21?

1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%

ICSE21

Evaluation

45

• Inferior to 2-encoder Transformer(ICSE21’)

• Because 2-encoder imports NL comments

which could guide the revision

Compare to ICSE’21?

1413/14750=9.58% 2602/14750=17.64% 3014/14750=20.43%

Reflection: Transformer + ?

46[1] https://tufanomichele.com/

A List of SE Papers by Tufano based on Transformer

• Ph.D. Thesis: Learning Code Transformations via Neural Machine Translation

• ICSE 2021: Towards Automating Code Review Activities

• ICSE 2020: On learning meaningful assert statements for unit test cases

• TSE 2019: SEQUENCER: Sequence-to-Sequence Learning for End-to-End Program Repair

• TOSEM 2019: An Empirical Investigation into Learning Bug-Fixing Patches in the Wild via Neural Machine Translation

• ICSE 2019: On Learning Meaningful Code Changes via Neural Machine Translation

• Unit Test Case Generation with Transformers

• Generating Accurate Assert Statements for Unit Test Cases using Pretrained Transformers

Reflection: Transformer + ?

47[1] https://ml4code.github.io/tags.html#Transformer

Thanks

Zhu Jie

2022.04.28

